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ABSTRACT
Remanufacture involves the production-batch disassembly,

cleaning, replacement and refurbishment of worn parts in
defective or obsolete products.  For appropriate products,
remanufacture offers significant economic and ecological
advantages over other end-of-life options.  Since the essential
goal of remanufacture is part reuse, the reliability of
components is important.  The goal of this work is to consider
reliability effects on life-cycle costs to enable design for reuse.  

A reliability model is developed to describe systems that
undergo repairs performed during remanufacture or maintenance.
First, the behavior of the model and preliminary experimental
verification of the model are described.  The model allows
replacement of failed parts with both the same and different
types of parts.  An example simulation applied the reliability
model to compare the effects on life-cycle cost of various
combinations of mechanical components in a series system.  

MOTIVATION
In addition to resource conservation, design for product end-

of-life is compelled by existing and impending product take-
back laws that place product end-of-life responsibility on the
manufacturer.  Given this responsibility, the manufacturer may
choose to pay increasingly higher fees for landfill or
incineration, or have the product reused, repaired,
remanufactured, or recycled for scrap material.  While many
design-for-end-of-life guidelines emphasize facilitating scrap-
material recycling, significant resources are consumed during the
recycling process.  Furthermore, material degradation often
results due to molecular breakdown and contamination, both of
which are frequently characteristic of current recycling
technologies.  Individual product repair and maintenance are
limited by the high labor costs that tend to cause discarding of
repairable products.  Lund (1983) observed that by recycling at
the component instead of the material level, remanufacturing
avoids the possibly unnecessary resource consumption of scrap-

material recycling while preserving the value added to the
component during manufacture.  Also, the production-batch and
off-site nature of remanufacturing results in a labor cost
significantly lower than that required for individual repair.  

While remanufacture is not suitable for all products, it is
particularly appropriate for technologically stable items, where a
large fraction of components can be reused after refurbishment.
Product design that facilitates any of the steps of remanufacture,
namely disassembly, sorting, cleaning, refurbishment,
reassembly and testing, will facilitate remanufacture.  However,
the essential goal in remanufacture is part reuse.  If a part
cannot be reused as is or after refurbishment, the ease of
disassembly, cleaning or reassembly will not matter.
Refurbishment activities aim to return a part to a like-new or
better condition, and include, for example, reboring out-of-round
cylinders or fitting cylinders with sleeves.

When parts are to be reused, in either remanufacture or
maintenance, the reliability of the part is very important.
Collaboration was initiated with three companies that
remanufacture a variety of products to learn about the
remanufacture process and how products can be designed to
facilitate remanufacture.  These companies are Eastman Kodak,
a manufacturer and remanufacturer of photocopiers, single-use
cameras, and medical analysis equipment; Nashua Cartridge
Products, a remanufacturer of toner cartridges; and Arrow
Automotive Industries, a remanufacturer of automotive after-
market parts.  This collaboration offered insights on reliability
issues across the companies and needs for reliability modeling.  

Existing reliability models are unsuitable for describing
systems that undergo repairs performed during remanufacture.
The goal of this research is to develop and verify reliability
models to be used in life-cycle cost estimations of systems
where reuse of working components is possible.  These
calculations help explore initial part design and remanufacture
process plan alternatives in the context of other life-cycle
concerns.  Currently, this model is used in a genetic-algorithm
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based optimization of life-cycle costs.  This paper focuses on
the reliability modeling and simulation.  

OVERVIEW
This paper begins by highlighting related work in the fields

of both life-cycle design and reliability.  Selected reliability
models with features closest to those desired are detailed before
introducing the motivation for distinct characteristics
incorporated into the model developed here.  The goal of this
paper is to illustrate properties of this model and how it can be
applied to compare design alternatives for mechanical series
systems.  This model currently describes series systems whose
components have Weibull-distributed densities of time to
failure.  Therefore Weibull-related terminology and notation are
first defined.  The model simulates the replacement of failed
parts with components of the same or a different type.
Replacement parts can be either new or remanufactured.  Parts
of the same type are those that have identical failure
characteristics to the original part.  The simulation results of
replacement with the same parts were experimentally verified.
Replacement of failed parts by components of a different type
often more accurately portrays remanufacture, where the
replacement part has different failure properties from those of
the original part.  The modification can be subtle, due to
different sources for replacement parts, or drastic, due to
reconfiguration of the system for upgrades or correction of
known reliability problems.  The interaction of multiple parts
in a system is described using series-system reliability theory.
An example applies the model to compare the life-cycle costs of
various combinations of mechanical elements and illustrates
additional considerations for application to mechanical systems.

LITERATURE REVIEW
Researchers have considered the roles of failure and

serviceability in life-cycle design.  Gershenson and Ishii (1991)
implemented Service Mode Analysis, which focuses on repair
possibilities of various system malfunctions, in a computer
tool that calculates serviceability indices of various user-defined
failure phenomena.  DiMarco et al. (1995) integrated Failure
Modes and Effects Analysis into a computer-aided design tool to
bring consideration of service costs early in the design process.  

Ascher and Feingold (1984) surveyed the considerable body
of reliability literature on repairable systems and observed that
much of this work models one of two extremes.  The first
extreme represents the repair process as returning a system to a
same-as-new condition.  The other extreme, known as minimal
repair or same-as-old, describes the system reliability after repair
as identical to that before failure.  This is rationalized by repairs
that involve the replacement of a small fraction of a system's
parts.  For this model to be exact, the replacement part must
have the same distribution of time to failure as the original part,
and the same age if the failure rate is age dependent.

Moderation of the above two extremes include the
following.  Brown and Proschan (1980) model imperfect repair,
where at each repair, renewal to the same-as-new state occurs
with probability P and no age reduction or same-as-old occurs

with probability 1-P.  Nakagawa (1980) models partial renewal
of a system at maintenance times, where the effective unit age
is reduced to a proportion of the actual age.  De la Mare (1979)
fit Weibull distributions to data for successive times between
failures for many types of systems.  He used the estimated
means in a cost model to optimize system life-cycle costs.
Cozzolino (1968) developed two models, the n-component
device model and the time accumulation model.  The n-
component device model tracks the ages of a system's
constituent parts, and each part can have different distributions
of time to failure. The time accumulation model, developed to
reduce the complexity of the n-component device model,
assumed that the n  constituent parts are identical.

Cozzolino's n-component device and time accumulation
models have some desirable properties which will underlie the
unique features of the model developed here.  The Cozzolino
models assume neither complete system renewal to the same-as-
new condition nor minimal repair to the same-as-before-failure
state, a trait retained here.

The n-component device model describes a system
composed of n parts in series, such that failure of any one part
results in system failure.  Each part's failure characteristics are
independent of other parts' failure processes.  Time to first
system failure is the minimum of the components' times to
first failure.  The device ages by accumulating time on its
constituent parts, and the vector of component ages determines
the density of future time to failure.  Failure of one part is
repaired by replacement with a part of the same type.  Since
only the age of the replaced part is reset to zero while the other
components retain their age, the system failure rate never
returns to its initial value.  The time accumulation model
produces behavior similar to the n-component device model in a
less structured manner by assuming n identical parts, so that the
identity of the repaired part need not be tracked.  At each failure,
1/nth of the system accumulated age is lost.  

CHARACTERISTICS OF MODEL
The model developed here describes a population of n-

component series systems.  The n parts have independent and
different distributions of time to failure.  The population of n-
component systems is represented as a collection of n
populations of constituent components, and parts are treated as
members of their respective populations.  Populations of
"single-component" systems are used to introduce this model.

The age distributions of each of the part populations are
tracked to determine the reliability of the composite system
population.  Time-to-failure and age distributions associated
with each part population are used to calculate the probability of
failure of that part at any given time.  Failure of a part has
different consequences.  First, the failed part can be replaced
with a part of the same type while retaining the working parts
of the system.  Second, the failed part can be replaced by a part
of a different type, while the rest of the system either remains
unchanged or is reconfigured to accommodate the replacement
part.  Finally, a failed part can cause replacement of the entire
system with either an identical or a different system.
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The possibility of system modification is not included in
many models, including those of Cozzolino, in which
replacement is limited to a component of the same type.  This
additional capability is motivated by common practices in
remanufacture.  For example, bearings are often replaced with
higher-durability bearings during remanufacture.  Many
refurbishment processes change the reliability characteristics by
altering the system configuration.  For example, bronze
bushings are installed in distributor housings that wore due to
the lack of separate bearings in the original design.  

In this model, the repair policy determines actions executed
upon part failure.  In practice, corporate refurbishment policy
significantly affects both the system reliability and the
consequent remanufacture cost of a given original design.  Some
companies may choose to always replace a particular part
without inspection, either due to product reconfiguration or past
reliability problems, while others will replace based on either
actual part failure or projected remaining life.  

This model describes series systems where the density of
time to failure of each component is represented by the two-
parameter Weibull distribution.  The extension of this model to
use other distributions is fairly straightforward.  The Weibull
distribution was selected because it is appropriate for many
engineering applications.  Special cases of the Weibull
distribution include the exponential and Rayleigh distributions.  

WEIBULL DISTRIBUTION NOTATION
The Weibull probability density function is:

f (x ) =
a-1ax
ab

exp[-(
x
b

)a ] ,     0 £ x £ •                   (1)

where x is a random variable that can represent time.
Fig. 1 plots Weibull distributions with b=10 and values of

a from 1 to 5.  a is the shape parameter; a larger a  reduces
spread about the expected value.  b is the scale parameter; as
a increases, the peak of the distribution approaches b.  A part
with a Weibull-distributed density of time to failure has an
expected lifetime of approximately b.  a  indicates the certainty
of the expected value.  a=1 yields the exponential distribution,
and a=2, the Rayleigh distribution.  The effects of a and b on
the model output will appear throughout the paper.

The value of f(x) is the probability that a part fails between
times x and x+dx.  F(x), the integral of f(x) from 0 to x,
represents the probability that a part fails at any time up to x.
1-F(x) is the probability that the part will survive past x.

F(x) = f ( x)dx
0

x
Ú                                                      (2)

Fig. 2 plots F(x) curves corresponding to the densities of Fig.
1. Note that b locates the intersection of the family of integrals.  

Another quantity often used in reliability is the failure rate
function which is represented by:  

l ( x) =
f (x )

1- F(x )
                                                     (3)

The failure rate is the conditional probability of failure at x
given survival to x.  Note that the failure rate becomes greater

than 1, and that the failure rate function is not a density
function.  Fig. 3 plots failure rates corresponding to the
distributions of Fig. 1.  The negative exponential distribution
(a=1) yields a constant failure rate.  The failure rate for Weibull
densities increases with x to the power of (a-1).
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SIMULATION
The density function of time to failure of each part of a

system is used to calculate the life-cycle cost for a population of
systems.  An age distribution is obtained at each time step for
each part population.  The age distribution determines failure
rates for the following time step.  The failure rates of each part
determine the replacement part cost portion of the life-cycle cost
of the system.  Failed parts can be replaced with parts of either
the same or different type.  First presented will be the
simulation of replacing failed parts by the same type of parts.
The model behavior for this basic simulation is experimentally
verified.  Next presented is the simulation of replacing failed
parts with components of a different type.  This section
examines the behavior of the model for a single part population.
The following section will describe how the interactions
between multiple parts of a system are treated.  

Description of Basic Simulation
Age bins are used to track the age distribution of a

population of parts.  The time-to-failure density determines the
portion of the contents of each bin that survive to the next time
step, appearing as contents for the next older bin, and the
portion that fails, appearing as contents in the zero-age bin.
Figs. 5a through 5f track the age bin distributions for six

consecutive time steps for a population of parts whose time-to-
failure density and corresponding probability of failure are
plotted in Fig. 4.  Age bins are created at increments equal to
the time between events, e.g., number of years between
remanufacture activities.  Time between events, or bin size, of 1
was used to produce results shown in Figs. 5a through 5f.  

Initially, all parts are in the first bin as shown in Fig. 5a:
the population consists only of new parts.  That is, at t0 = 0 ,
q0 (t0 ) = 1 , where qi  is the fraction of parts in the ith bin.

At the next time step, the failure density is integrated using
numerical methods developed by Senin et al. (1996) from zero
to one time increment to find the probability of failure.  The
portion of the population that survives advances to the next age
bin, and the portion that fails is replaced and reappears as items
in the first age bin, as shown in Fig. 5b.  That is, at t1 = Dt ,
the fractions of the first two bins become:

q1(t1) = q0(t0 )[1 - f (x )dx
0

Dt
Ú ]

q0 (t1) = q0 (t0 )[ f (x )dx
0

Dt
Ú ]

                                    (4)
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Again, portions of both age bins survive and advance to the
next age bin, and portions of failed parts from both bins appear
as replaced parts in the first bin.  The proportions of each bin
for t2 = 2Dt , the following time step, are calculated by:

  

q2 (t2 ) = q0(t0)[1- f (x )dx
0

2Dt
Ú ]

q1(t2) = q0 (t1)[1 - f (x )dx
0

Dt
Ú ]

q0 (t2 ) = q0(t0)[ f (x )dx
Dt

2Dt
Ú ] + q0(t1)[ f (x )dx

0

Dt
Ú ]

                 (5)

Finally, at tn = nDt , the fractions of parts in each bin are:       

qn (tn ) = q0(t0)[1- f ( x)dx
0

nDt
Ú ]

qn-1(tn) = q0 (t1)[1- f (x )dx
0

(n -1)Dt
Ú ]

...

q2 (tn ) = q0(tn-2 )[1- f ( x)dx
0

2Dt
Ú ]

q1(tn) = q0 (tn-1)[1- f ( x)dx
0

Dt
Ú ]

q0 (tn ) = q0(t0)[ f (x )dx
(n -1)Dt

nDt
Ú ] + q0(t1)[ f (x )dx

( n-2)Dt

(n -1)Dt
Ú ]+

... +q0(tn-2)[ f (x )dx
Dt

2Dt
Ú ] + q0(tn-1)[ f (x )dx

0

Dt
Ú ]

 (6)

For the preceding simulation, much of the initial
population advances to the next age bin for the first two time
steps.  At time t3, over 60 percent of the parts put into service
at time to are still in service.  By time t4, under 40 percent of
the original parts have survived, and by time t5, fewer than 15
percent of the original parts are still in service.  This can be
inferred from the probability of failure, F(x) of Fig. 4; F(x) is
initially very small, but by t5, it is about 85 percent.  

The average age of the population is calculated by
summing over all the age bins the product of the fraction of
parts in that bin and the age of the bin:

a(t ) = qi
i=0

n(t )
Â (t)ai                                                      (7)
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Results of Basic Simulation
Fig. 6a plots the average age of constant-size populations

of identical parts that are replaced by components of the same

type upon failure.  Each curve represents a population of parts
with a particular Weibull distribution of time to failure.  The
plots shown correspond to a constant value of b=10 paired with
a=1,2,3,5, and 10.  Both the horizontal and vertical axes have
the same units of time, e.g., minutes, hours, or years.

Several characteristics of Fig. 6a are of interest.  First, the
average age eventually reaches a steady state value.  This is in
agreement with Drenick's Theorem (Drenick 1960), which states
that the superposition of an infinite number of independent
equilibrium renewal processes is a homogeneous Poisson
process.  A homogeneous Poisson process is one that can be
represented by an exponential distribution.  Recall from Fig. 3
that the failure rate corresponding to the exponential distribution
(a=1) is constant.  A population with a constant failure rate and
part renewal upon failure has a constant average age.  The value
of the steady state age depends upon Weibull parameters a  and
b.  The dependence on b is not surprising; higher values of b for
a given set of a 's yield higher values for expected time to
failure and thus average age.  

Alpha affects both the steady state value and the degree of
oscillation.  Recall from Figs. 1 through 3 that as a  increases,
the window of time during which a majority of parts fail
decreases.  For high values of a , very few parts will fail until
time=b, at which time almost all the parts will fail
immediately.  During the low-failure period, the average age
will increase monotonically.  Then as increasingly large
numbers of parts fail, the replacement of a significant portion of
the population causes the average age to drop until the wave of
failure is over.  The newly installed base of parts then ages
steadily until the next failure wave.  During each oscillation, a
number of parts fail outside the time window during which
most of the population fail.  The population thus becomes
more age-diversified with each cycle, and the oscillations in
average age die down.  The higher the value of a , the fewer
parts fail outside the tighter expected failure period, and thus the
greater the oscillations in average age and the longer it takes for
age diversification to occur.  As a  increases, the mean of the
average age approaches b/2.  This is intuitive when one
considers the upper bound as a approaches infinity.  Physically,
such a distribution of time to failure implies that no parts fail
until time=b, at which time all the parts fail.  Therefore this
population would have a saw-toothed average age plot that does
not decay and is bounded between 0 and b.  

Fig. 6b plots the replacement parts cost corresponding to
Fig. 6a.  For ease of comparison, all parts were assigned
identical costs.  In reality, cost is likely to be a function of both
a  and b.  The trends of Fig. 6b are consistent with those of
Fig. 6a.  The total replacement part cost increases as average
age decreases since parts are being replaced at a higher rate.
Steady state replacement costs are higher for lower steady state
average ages.

Experimental Verification of Basic Simulation
An experiment was performed to verify the basic behavior

of the model.  This experiment applied the model to a fastening
system and involved obtaining data on the number of
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disassembly and reassembly cycles before a screw strips a hole
in plastic.  

For the experiment, a grid of holes was drilled in a sheet of
polypropylene.  Thread-forming screws were repeatedly inserted
into the holes and removed using a power screwdriver at a
constant torque until the screw continued to spin when fully
inserted.  

The number of rows of holes represents the number of
systems in the sample.  A sample size of 50 systems was used.
When a hole fails, ‘part replacement’ involves using the next
hole in the same row.  A screw removal-and-insertion cycle
performed on the sample constitutes a time step.  The number
of screw removal-and-insertion cycles until failure was recorded
for each hole.  This was used to obtain a distribution of number
of cycles to failure for the sample.  The number of cycles
survived by each active hole averaged over the sample at each
time step yields the average age plot.  The data associated with
the final holes were not used to obtain the cycles-to-failure
distribution because those holes had not failed yet, but they
were used to calculate the average age.

Fig. 7a compares the sample histogram of cycles to hole
failure with the Weibull distribution that produced the least-
squared error between the experimental data points and the
values determined by the distribution.  Fig. 7b compares the
average age yielded experimentally with that produced through
simulation using the above Weibull distribution.  

In a second experiment, a higher torque was used to obtain
a different distribution of cycles to failure of the holes.  Higher
torque reduces b by stripping the hole in fewer cycles.  A less
controlled and predictable process also reduces a .  Fig. 8a
compares the sample histogram of cycles to hole failure with
the Weibull distribution producing the least squared error.  Fig.
8b compares the experimental average age with the average age
simulated using the corresponding Weibull distribution.  

For both experiments, the agreement is reasonable
considering the relatively small sample size of 50.  The smaller
sample size is much more sensitive to outliers and thus displays
a greater noise level than if a larger sample were used.  
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Simulation of System Modification
The preceding simulation results and experimental

verification were for the replacement of failed parts with parts of
the same type.  As explained earlier, repairs during
remanufacture often change the reliability characteristics of a
system by replacing failed parts with components of a different
type.  The remaining parts of the system can either stay the
same or be reconfigured to accommodate the replacement part.
Similar experimental verification of this behavior could involve
using, in the first hole of each row, screws with thread densities
different from the screws used in the remaining holes of each
row.  The different thread density will result in a different
distribution of disassembly and reassembly cycles to failure for
identical holes.  In the remanufacture of toner cartridges, when a
plastic boss is stripped, a larger or coarser-thread screw is often
used in place of the original screw.

The simulation results for the replacement of failed parts of
a population with parts of a different type follow.  Subsequent
failure of replacement parts result in replacement by the same
parts, i.e., parts of the original type are not reintroduced into the
population.   

Figs. 9a and 9b chart the replacement of an initial
population of parts with Weibull parameters a=3, b=10,
denoted (3,10), with parts of Weibull parameters a=10, b=10,
denoted (10,10).  Subsequent replacement of failed (10,10) parts
are with the same (10,10) parts.  For reference, replacement of
an initial population of (3,10) parts by the same (3,10) parts
and replacement of an initial population of (10,10) parts by the
same (10,10) parts are also plotted.  Of interest in the average
age and part replacement cost plots are the phase shift and
reduced oscillation of the (3,10)-to-(10,10) curve relative to the
(10,10)-to-(10,10) curve.  An original population of (3,10) parts
fail earlier and with more spread between time-of-failures than
an original population of (10,10) parts.  Therefore the first
replacement batch of (10,10) parts appear earlier and more
staggered over time for a population that began with (3,10)
parts than for a population that began with (10,10) parts.  The
effect of this initial difference carries over to subsequent
replacement cycles.  
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SERIES SYSTEM BEHAVIOR
The previous sections described the behavior of the model

for single populations of parts.  This section will illustrate how
the reliability of a system is obtained from the reliability of the
constituent parts in series.  In a series system, the failure of any
one of the constituent parts results in system failure.

The failure rate of a series system is the sum of the failure
rates of the components:

l sys(x ) = li (x )
i=1

N
Â                                                   (8)

The reliability of a series system is the product of the
reliability of the components:

Rsys (x ) = 1- Fsys (x ) = 1- Fi (x )
i=1

N
’                            (9)

From (3), the failure density of a series system with parts
with Weibull failure densities is then:

f sys(x ) = lsys(x )Rsys (x ) =
a i xa i -1

bi
a ii=1

N
Â e

-( x
b i

)ai

i=1

N
’

f sys(x ) =
a ix

a i -1

bi
a ii=1

N
Â (e

- ( x
b i

)a i

i=1

N
Â

)

        ( 1 0 )

For example, consider a system composed of two parts in
series, each with a density of time to failure that is described by
a Weibull distribution with parameters, a=3, b=10:

f1(x ) = f 2( x) =
3x2

103 exp -(
x

10
)3È 

Î Í 
˘ 
˚ ˙                           (11)

The density of time to failure for this system is:

f sys(x ) = 2(
3x2

103 )exp -2(
x

10
)3È 

Î Í 
˘ 
˚ ˙                              (12)

The probability of system failure can be obtained by integrating
(12).  For a two-component system, the probability of failure
can also be computed by:

Fsys(x ) = F1(x ) + F2 (x ) - F1( x)F2(x )                     (13)
where the probabilities of part failure are obtained by integration
of the corresponding part failure density functions.

System failure can result in either partial or complete
replacement of the system.  Figs. 10a and 10b compare the
average age and replacement part cost for replacement of only
the failed part versus system replacement.  As expected, the
average system age is higher if only the failed part is replaced,
and the replacement cost is lower if only the failed part is
replaced.  Components of a system are sometimes arranged or
joined in a manner that requires the replacement of more than
one part upon the failure of a single part.  Also, part
consolidation often results in single parts containing multiple
features, the failure of any one of which would require part
replacement.  The cost curves of Fig. 10b suggest the
advantages of making failure-prone features separable, so that
the failure of a small portion of a part does not require the
replacement of a largely unaffected and possibly expensive part.  

SERIES MECHANICAL SYSTEMS
This section presents additional considerations for

application of the model to mechanical systems.  The model is
then applied to an example mechanical system to compare life-
cycle part replacement costs for various combinations of
component selection.

Wear and failure of mechanical components often occur due
to relative motion between parts, and thus the reliability of
many mechanical components depends on the interaction with
the component with which it is coupled.  For example, a gear
may have different failure characteristics depending on the gear
with which it meshes.  Therefore, failure characteristics are
defined as interactions between parts.   
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For example, consider the driver-shaft-and-bevels assembly
and driven bevel pinions illustrated in Fig. 11.  The interactions
between the driver and driven bevels, as well as the material and
geometry characteristics of each gear, prescribe the gear failure
parameters.  Tables 2 and 3 contain hypothetical gear failure
characteristics as a  and b of the Weibull distributed time-to-
failure density.  Table 2 contains failure density functions of
driver-assembly bevels made from three different materials as a
function of the material of the meshing driven bevel pinion.
Table 3 contains the corresponding failure characteristics for the
driven bevels.  The trend assumed by the tables is that a softer
material wears faster when meshed with a harder material.

If the entire driver assembly is replaced as a unit upon
failure of either driver bevel, the assembly has two
simultaneous interactions.  The resultant failure density of the
assembly due to the failure of either driver bevel can be found
using (10).

Fig. 11.  Failure characteristic representation
for mechanical elements in series

Table 1.  Gear costs used in simulation
Gear material Driven

Bevel 1
Driver
shaft/bevel
Assembly

Driven
Bevel 2

Polished steel 20 50 20

Brass 15 40 15

Nylon 5 15 5

Table 2. Failure distributions of driver assembly
bevels for various material combinations

Driver bevel
material

Driven bevel material

Polished
steel

Brass Nylon

Polished steel a=6, b=8 a=7, b=12 a=8, b=16

Brass a=3, b=4 a=4, b=8 a=5, b=12

Nylon a=1, b=1 a=2, b=2 a=2, b=3

Table 3. Failure distributions of driven bevels
for various material combinations

Driven bevel
material

Driver bevel material

Polished
Steel

Brass Nylon

Polished steel a=6, b=16 a=7, b=24 a=8, b=32

Brass a=3, b=8 a=4, b=16 a=5, b=24

Nylon a=1, b=2 a=2, b= 4 a=2, b=6

The part cost and failure data of Tables 1 through 3 are used
to compare life-cycle part replacement costs for four
combinations of part selection.  These combinations are: steel
driver-assembly bevels with steel driven bevels, steel driver-
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assembly bevels with brass driven bevels, brass driver bevels
with nylon driven bevels, and nylon driver bevels with nylon
driven bevels.  In each combination, both the driver bevels are
of the same material, as are both the driven bevels.

Several simplifications over typical practice are made.  The
effects of the attachment between the bevels and the shafts are
neglected.  Meshing gears are usually both replaced when either
needs to be replaced, but here only the failed part is replaced, and
the failure characteristics of one gear are assumed to be
independent of the meshing gear age.  The driver-shaft-and-
bevels assembly is counted as one part and replaced as a unit.  

The cumulative part costs for the above material
combinations, shown in Fig. 12, suggest that the use of
cheaper parts is more cost effective.  However, the cumulative
cost included only part costs, not labor cost, nor the cost of
disruption while the failed part is being replaced.  Fig. 13 plots
the total population replacement part costs obtained by adding a
uniform cost of 60 to the part costs in Table 1.  This additional
cost can either represent a labor cost incurred each time a part is
installed or replaced, or make up for an initial underestimate of
component costs.  The results are then reversed:  the most cost
effective combinations are those that incur a larger part cost, but
also last longer.  This confirms that the labor and disruption
costs associated with replacing a component, in addition to the
cost of the component, should drive initial component
selection.  Figs. 12 and 13 also suggest that the interaction
between part cost and reliability makes it difficult to predict
from intuition alone the combination of component selection
that will yield the lowest life-cycle cost.

SUMMARY AND FUTURE WORK
This paper presented a reliability model which estimates

life-cycle costs of systems that are remanufactured.  These
reliability-based, life-cycle costs can be used to compare design
alternatives.  

Contrary to many other system reliability models, this
model describes repair during remanufacture or maintenance as
leaving the system in neither same-as-new nor same-as-old
states.  Furthermore, this model accommodates system
modification, in which failed parts are replaced with components
with different failure characteristics.  This feature portrays more
accurately many instances of component replacement during
remanufacture or maintenance.  Replacement components may
have different failure properties from the original components
because of different suppliers of replacement parts and system
upgrade or reconfiguration.   

The model represents a population of systems as a
collection of populations of the constituent parts.  Part failure
can result in replacement of the part with a component of the
same or different type, or in replacement of the system.  When
only a portion of the system is replaced, the remaining parts of
the system either remain unchanged or are reconfigured to
accommodate the replacement part.  The age distribution of each
part population determines the failure characteristics of the
corresponding part.  Currently, this model describes series
systems in which the components have densities of time to

failure that can be represented by the two-parameter Weibull
distribution.

The basic model behavior simulates replacement of failed
parts with components of the same type; this fundamental
behavior was experimentally verified.  Since it is common
practice in remanufacture to replace failed parts with
components of a different type, this situation was also modeled.
Reliability theory necessary to predict system failure from the
failure characteristics of the constituent parts in series was
outlined.  Finally, the model was applied to a mechanical series
system to compare life-cycle costs of various combinations of
part selection.

This model will be expanded to encompass systems with
series, parallel, and standby subsystems, where component
failure rates can be represented by a variety of distributions.
Data from industries that perform remanufacture and
maintenance will be used to select distributions and parameters
for failure rates.  

Integration of this model into a life-cycle cost optimization
builds understanding of how part specifications and repair
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policies affect product life-cycle, and enables remanufacture and
maintenance to become more cost-effective and viable.  The
increased viability of remanufacture will result in positive
effects on both the environment and economy.  

The stochastic nature of this method will complement a
probabilistic design methodology that combines life-cycle and
traditional design requirements (Wallace et al. 95).  Life-cycle
concerns project into the future and inherently involve
uncertainty.  Therefore, a probabilistic design framework that
treats uncertainty in life-cycle factors such as future disassembly
technologies and legislation, and uncertainty in traditional
design parameters, such as material strength and costs, seems
appropriate.  This supports the long term goal to integrate life-
cycle issues into a systems-oriented, computer-aided design tool
so that consideration of environmental aspects will become an
inherent part of the product design process.  
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