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ABSTRACT
This paper addresses a multi-robot optimal assembly

planning problem which in essence is an augmented Travelling
Salesperson Problem (TSP+). In our TSP+, both the
“salesperson” (a robot with a tool) as well as the “cities”
(another robot with a workpiece) move.  Namely, in addition to
the sequencing of tasks, further planning is required to choose
where the “salesperson” should rendezvous with each “city”.
The use of a genetic algorithm (GA) is chosen as the search
engine for the solution of the multi-robot TSP+ optimization.
As an example industrial application the optimization of the
electronic-component placement process is addressed. In the
most generalized component-placement system configuration,
the placement robots meet the component delivery systems
(CDSs) at optimal rendezvous locations for the pick-up of
components and subsequently meet the printed circuit board (on
the mobile XY-table) at optimal rendezvous locations for their
placement. In addition to the solution of the component-
placement sequencing problem and the rendezvous-point
planning problem, the collision-avoidance issue is also
addressed.

1. INTRODUCTION
Autonomous robotic systems are increasingly utilized in

industrial environments, requiring the development of
modelling methodologies and tools to optimize their operational
efficiency.  In this context, the classical assembly-planning
optimization problem has been extensively studied, with
numerous recent attempts at applying the earlier research results
to robotic-based assembly, [e.g., 1].

This paper presents a novel point-to-point (PTP) motion-
planning technique for multiple coordinated assembly robots,
1

which can be modelled as a TSP, using Genetic Algorithms
(GAs) [2]. As an example industrial application, the
optimization of an electronic component placement process is
utilized [e.g., 3, 4].

The Travelling Salesperson Problem: Many variations of this
combinatorial problem have been addressed in the literature,
including the Asymmetric, Symmetric, Euclidean, Chebyshev,
Prize Collecting and Time-dependent TSP variations [e.g., 5, 6,
7, 8, 9, and 10 ]. Leu et al. [11] solve the electronic-component
placement optimization problem using genetic algorithms.
Three types of assembly machines were modelled: (1) A single-
robot pick-and-place problem with fixed feeders and a fixed
Printed Circuit Board (PCB), (2) Problem 1 extended to have
feeder component assignment optimization, and (3) A multi-
head fixed placement turret with a moving XY-table and feeder
component optimization.

The Augmented Travelling Salesperson Problem (TSP+): In
contrast to the single-robot TSPs, where the primary objective
is to find the best sequence for N tasks, for multi-coordinated-
robot problems, one must also solve the “rendezvous-point”
planning problem. In such augmented TSP, (TSP+), the
“salesperson” (one robot) as well as the “cities” (PCB
placement locations that are moved around by another robot)
have motion capability.  Namely, further planning is required to
choose where the “salesperson” should rendezvous with the
“city”.  This minimum-time optimization problem is further
complicated when two placement robots are used concurrently
in a task-sharing mode. As one of the few research projects on
point-to-point (PTP) TSP+, Cao et al. [12,13] address the issue
of inspection-task-sequence planning for two coordinated
robots using the simulated-annealing technique. A series of
locations on a sphere are inspected by the robot pair. As
expected, they showed that the cooperative robot configuration,
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where both robots moved, was faster than when only one robot
moved and the other acted as a fixture.

Augmented Travelling Salesperson Problem with Multiple
Robots: If an additional robot is introduced into the TSP+,
which continuously shares its workspace with  the other
placement robot, it would be necessary to directly address the
collision avoidance problem.  Such multiple-robot collision
avoidance problems have been addressed in the literature in two
primary ways: (1) Collision avoidance through path planning,
and (2) Collision avoidance through scheduling (or time
delays), [14, 15, 16, 17]. For example, Lee and Lee [18]
propose solving the collision-avoidance problem by speed
changes, which introduce a time delay in one of the two robots.
Each robot is represented by a single sphere at the wrist, and
straight-line motion is assumed. For paths that are close
together, collision maps of time versus distance travelled along
the robot path are generated.

2. PROBLEM DEFINITION & SOLUTION APPROACH
In electronic assembly, components must be placed onto

the PCB in a time-efficient manner.  The first task is the
configuration of the PCB, where component locations are
determined subject to constraints and objectives.  In this
research, it is assumed that this task has already been carried
out.  It is also assumed that the component-placement machine
picks and places one component at a time. Although various
other placement strategies exist, and are further detailed in the
literature, [e.g., 7], the objective of this paper is the
investigation of the fundamental TSP+ problem as it applies to
electronic component placement.

2.1. Problem Definition

(i) Set-Up Geometry

Figure 1 shows the most generalized physical set up of the
two-robot-placement machine modelled. The system comprises
five main sub-systems: two X-Y gantry robots for component
pick-and-place operations; a numerically controlled X-Y table,
on which the PCB is located; and, two single-dof multiple-
component delivery systems, with controllable motions in the Y
direction.

The two gantry robots share a common workspace, which
includes the workspace of their respective component-delivery
systems and the workspace of the X-Y table. Each CDS is
accessed by only the robot assigned to it. The two robots are not
allowed to crossover each other.
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Figure 1: The Two-Robot Electronic-Component
Placement Machine Configuration.

(ii) Problem Structure

For the two-robot configuration in Figure 1, there exist five
sub-problems: Assigning components to robots; Determining
the placement sequence;  Finding the rendezvous locations;
Coordinating robot movements; and, Planning the device paths.

Although components are placed one at a time, according
to an overall sequence, each component is placed by only one
of the two robots.  This requires each robot to be assigned the
components it is responsible for placing. Since components are
assumed to be placed sequentially, the placement sequence is
identified as a variable. The rendezvous-planning problem is the
process of determining the meeting positions of the placement
robot and the CDSs, and the meeting positions of the placement
robot and the mobile X-Y table. When the combined dof of the
two moving sub-systems is above the minimum needed, an
infinite number of possible rendezvous-location solutions exist
for every potential pick or placement exchange between two
moving devices.  Therefore, for a given sequence of picks and
placements, a corresponding set of optimal rendezvous
locations must be determined. Once the rendezvous positions
have been determined, since there are two gantry robots sharing
the workspace, it is necessary to coordinate the actions of the
two robots to prevent collisions.

The final problem is the robot-path-planning problem. For
a given point-to-point (PTP) (rendezvous) motion, the fastest
robot path is normally determined using the robot dynamics.  In
our case, for a given multi-component placement sequence, the
optimality of a potential set of rendezvous locations can be
determined by measuring the overall motion time. To achieve
optimal results, individual robot paths between these
rendezvous locations must also be optimized. This robot path
sub-optimization problem is not addressed in this paper since it
has been extensively addressed by the robotics research
community [e.g., 19].  Herein, it is simply assumed that
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minimum robot-motion time can be achieved by minimizing the
Cartesian distance travelled by the individual devices.

(iii) The Assembly Cycle

In order to calculate placement cycle times, the overall
board-population assembly problem is divided into individual
cycles. Figure 2 shows the process of a generic pick-and-place
cycle.  The robot starts this cycle at its previous placement
location and the CDS starts at its previous pick location. The
CDS moves to the current pick location, path # (1), while the
robot simultaneously moves there as well to rendezvous with
the CDS, path # (2).  The robot then picks the component from
the CDS. While (1) and (2) are happening, the X-Y table moves
to the current placement location, path # (3), where it meets
with the robot arriving from the current pick location, path #
(4). While (3) and (4) are happening, the CDS is allowed to
move, without waiting, to the next pick location.. The robot then
places the component and the cycle repeats itself for the next
component in the placement sequence (with either the same
robot or the second robot).

Last Pick
Location 1

2

4

3

Current Placement
Location

Last Placement
Location

Current Pick Location

CDS Robot X-Y Table

Figure 2: Illustration of a Single Cycle.

2.2. Proposed Solution Approach

The goal of our research was the development of a
methodology to optimize the assembly process outlined above.
Rather than optimizing one parameter at a time, a method that
allows us to optimize all parameters simultaneously is chosen.
This is advantageous since many of the parameters are
interdependent and the modification of one problem parameter
affects another. Use of a GA was chosen as the solution
approach for the problem at hand. The parameters for the
problems are encoded into genomes (GA data strings). The
fitness (objective function value) is used to determine which
genomes are chosen for reproduction.  The genetic operators,
3

then, generate new offspring, which are evaluated, and the
entire process is repeated until the best genome is determined.

The solution strategy must consider collision avoidance
between the two placement robots. Since the parameters of
sequencing and device positions during pick-and-place
operations affect both the collision avoidance problem and the
performance of a given placement strategy, it is advantageous to
check both simultaneously when searching for an optimum
solution, hence their integration into a single objective function
in this research.

To encode the two-robot parameters, a compound genome
consisting of a series of sub-genomes is proposed: a sequencing
sub-genome, two robot-assignment sub-genomes, and a
rendezvous-point planning sub-genome.

3. THE TWO-PLACEMENT-ROBOT PROBLEM

The goal of the two-placement-robot TSP+ problem is to
minimize the total assembly time. The cycle time is used
directly as the basis for the fitness score of a given GA genome.
This solution is an extension of a similar single-robot problem
detailed in [20]. For clarity purposes, the collision avoidance
issue will be addressed, only after the sequencing and
rendezvous-point-planning problems have been discussed.

3.1. Solution without Collision Avoidance
Considerations

3.1.1. The Objective Function

The objective function evaluates and assigns a fitness value
to a genome. Assembly time is used directly as the basis for the
fitness score. A genome for the two-robot case, with no
collision-avoidance consideration consists of four parts: The
sequencing sub-genome, two robot-assignment sub-genomes,
and the rendezvous-point sub-genome.

3.1.2. Calculating Cycle Time

For a potential placement sequence, the cycle time per
component can be calculated based on the selected rendezvous
locations between the devices and their initial locations. In
order to convert this collection of positions into time, one needs
to know the trajectory of each device from one point to the next.
For simplicity, in this paper, it is assumed that all devices move
in straight lines between two points at devices’ maximum
allowable speeds. (Due to the modularity of the proposed
solution, one may utilize one of the many robot-trajectory
optimization techniques proposed in the literature).
Copyright © 1999 by ASME



From Figure 3, one can see that there are four motion times
that need to be calculated: (i) The robot motion time-to-pick-

location, i
pk

r t , (ii) The CDS-motion-time to pick location, dti,

(iii) The robot motion time-to-placement-location, i
pl
r t , and,

(iv) The X-Y table motion time-to-placement location, tti.

CDS Robot X-Y Table

tti

r
pk

it

PKi-1
PKi

PLi-1
PLi

r
pl

it

dti

Figure 3: Illustration of Cyclic Device Motion Times.

The overall assembly time for a complete population of a
PCB, t, is calculated herein as follows:

∑
=

=
N

1i
iCt , (1)

where Ci is the time it takes to complete cycle i and N is the
number of components on the PCB. One can note that the cycle
Ci can be divided into two parts: (i) The time before the end of
the component pick operation, and (ii) the time after the
component pick operation.

3.1.3. Calculating Motion Times
The cycle time Ci for the two-robot system is defined by:

i
pl

itiri c]t,tmax[C += , (2)

where the robot time, rti, is the time the robot under
consideration executes all tasks required and moves from the
last placement location to be ready to place the next component
at the current placement location. The X-Y table time, tti, is the
time the table takes to move from the last placement location to
the current placement location. The robot cycle time, rti, can be
divided into: (i) the time before the pick operation, and (ii) the
time after and including the pick operation.
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(i) The robot time before the pick operation

 The completion of the first part of the robot cycle time,
st1

ir t , depends on both the CDS’ motion and the robot’s motion

to the pick location.  Therefore, the first part of the robot cycle
time is the maximum of the time the robot takes to reach the
pick location and the time the CDS takes to reach it. The former

is the robot motion time to pick location, i
pk

r t , minus the robot

off time, i
off

r t .  The latter is the CDS motion time to pick

location, dti , minus the CDS off time, i
off

d t . Therefore,

)]tt),(ttmax[(t i
off

didi
off

ri
pk

r
st1

ir −−= . (3)

The second term in Equation (3), i
off

r t , is the time the

current robot has been off since its last placement operation. If
the i’th component is placed by the same robot as the (i-1)’th
component, then;

0ti
off

r = . (4)

Otherwise, it is placed by the other robot and;

∑
−

+=

=
1i

1kj
ji

off
r Ct , (5)

where the index k represents the last cycle in which the current
robot moved.

The fourth term in Equation (3), i
off

d t , is the time period

that the current CDS has not been involved in a pick operation
and has had time to move toward its next pick location. In order

to calculate i
off

d t , the total time of the last cycle in which the

CDS was picked from, Ck, is taken, and the time the CDS was
busy is subtracted from it. The CDS is busy for the first part of

the robot cycle time, st1
kr t , and the component pick time, pkck. If

the i’th component is picked from the same CDS as the (i-1)’th
component, then, k=i-1 and:

1i
pk

1i
off

d1id1i
off

r1i
pk

r1ii
off

d c)]tt),(ttmax[(Ct −−−−−− −−−−= . (6)

Otherwise, it is picked from the other CDS, where it is also
necessary to add all the other cycles that the CDS has been off:

∑
−

=

−−−−=
1i

kj
k

pk
k

off
dkdk

off
rk

pk
rji

off
d c)]tt),(ttmax[(Ct , (7)

where the index k is the last cycle in which a component was
picked from the CDS under consideration.
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(ii) The robot time after and including the pick operation

The second part of the robot cycle time, nd2
ir t , depends on

the pick operation time, pkci, and the robot motion time to

placement location, i
pl
r t , which occur sequentially,

i
pl
ri

pknd2
ir tct += . (8)

Adding the first and second parts of the robot cycle time,
the overall robot motion time required in Equation (2) is
obtained as follows:

nd2
ir

st1
irir ttt +=

i
pl
ri

pk
i

off
didi

off
ri

pk
r tc)]tt),(ttmax[( ++−−= .(9)

3.2. Two-Robot Problem with Collision-Avoidance
Considerations

As discussed earlier, the two basic collision-avoidance
approaches noted in the literature are (i) the path-planning-
based approach, and (ii) the time-delay-based approach. The
collision-avoidance approach proposed herein adds a safety
delay to one of the two robots, delaying its motion until the
other robot is no longer on its path. This method may appear to
be an approach based on time delays, however, since collision
avoidance is integrated into the GA (as described below) the
end result is a combination of path changes and time delays.

For a given GA genome, potential collisions are averted by
adding a safety delay to one of the two robots.  Thus, the time it
takes to complete the assembly for that particular configuration
becomes longer.  (Namely, the fitness of the genome that is
based on the assembly time becomes lower). This is where the
correction for collision avoidance as part of the GA-
optimization evaluation becomes valuable. Since the variables
that affect the optimization of the system also determine
whether collisions occur, a separate collision-avoidance
correction carried out after the path-planning optimization
could interfere with the result. Herein, with the collision
avoidance integrated into the optimization, as is possible with
the GA, it is still possible to ensure that the solution is not only
collision free but also optimized.

3.2.1.  The Objective Function

The GA objective function evaluates a genome and assigns
a fitness value to it. In this section, the objective function is
identical to the one presented earlier with an additional term
related to collision avoidance.
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3.2.2. Calculating Motion Times

The cycle time Ci is calculated using Equation (2).
However, the expression for the robot cycle time is modified by

one additional safety-delay term, i
sd

r t :

i
sd

ri
pl
ri

pk
i

off
didi

off
ri

pk
rir ttc)]tt),(ttmax[(t +++−−= . (10)

Before the use of the safety-delay term in Equation (10),
one must determine if a collision is possible at all. It is assumed
that the robots do not stop anywhere except at the pick and
placement locations.  Namely, immediately after a placement
operation, the current robot starts to move back to its pick
location.

To carry out a collision check, the robot state must be
modelled in space and time. In order to simplify the collision
detection process, it was decided to model the robots as “walls”
moving across the workspace, as shown in Figure 4. This
modelling simplification reduces the state of the robot (for
collision avoidance calculations) to two variables, the robot X-
coordinate and a time at which the robot occupies the
corresponding position.

In Figure 4, for the placement of a component, Robot 1
moves from CDS 1 to the placement location.  Its maximum
travel toward the other robot is the X-coordinate of the
placement location of component i, r1wi. The current robot
(Robot 1, in the example) can collide with the other robot
(Robot 2) that may still be in the common workspace.
Therefore, in determining whether a safety delay is required,
one must check all previous cycles, up to the last cycle, in
which the current robot moved. Checking these previous cycles
is necessary since the cycle sequence determines only when the
components are placed, and not when the associated placement
robot starts moving. With a large enough robot-off time, a robot
in cycle i can start moving during cycle k+1, and reach the
placement location (potentially be in the other robot’s path) to
wait for the X-Y table.

For a collision to occur, the position and time for the two
potentially colliding robots have to match. Therefore, the
collision check for the current robot (in cycle i) checks all
previous cycles until the current robot last moved (cycle k).  To
check for an overlap, cycles (k+1) to (i-1) are examined to
ensure that the current robot placement location in the X axis
(r1wi) does not crossover with any of the other robot’s previous
placement locations (r2w(k+1) to r2w(i-1)).  If an overlap occurs in
one or more of the previous cycles, further testing to check the
time variables is necessary to confirm or disprove a collision.
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Figure 4: The Robots Modelled as Walls for Collision
Avoidance Detection.

In this paper, collision is defined as a situation in which the
current robot enters the overlap region before the other robot
has left it. In the case where both position and time variables
indicate that the robots are in the overlap region at the same
time, a preventive strategy must be developed. The approach
here is to introduce a delay to the current (cycle’s) robot’s
motion to allow the other robot to leave the overlap region
before the current robot enters it.

After all of the cycles, j= (k+1) to (i-1), have been tested
for collision, it is possible to calculate the exact amount of time
delay required to avoid a collision for a particular cycle j. The
delay introduced is the time required by the obstructing robot to
clear the overlap area before the current robot enters the overlap
area, [21].

3.3. Search Methodology
With the above definition of the objective function and its

various input parameters, it is possible to model any multi-robot
coordinated system. The methodology adapted in this paper is
the simultaneous solution of the multi-level optimization
problem using a GA as the search engine. Namely, the optimal
genome comprises the best placement sequence of the
components as well as the best rendezvous locations between
the robotic devices.

Since one of the goals of our work was to explore the effect
of the introduction of more dof to an assembly system, our
software is reconfigurable to run different set-ups: optimizing
the positions of all-fixed devices; optimizing the fixed location
of the X-Y table with a mobile CDS configuration; optimizing
the fixed locations of the CDSs with a mobile X-Y table
configuration; and, an all-devices-moving configuration. The
software also allows users to either define the locations of all
6

the components in the bins or have the GA optimize their
locations.

3.4. Simulation Examples
The following two configurations were considered for a 6-

component board:
(i) All devices moving with user-defined-CDS

allocation; Collision-avoidance routine is not
employed.

(ii) All devices moving, with user-defined-CDS
allocation; Collision-avoidance routine is
employed.

For Case (i), the simulation yielded a minimum total time
of 1.061 s with a placement sequence of (4, 2, 3, 0, 5, 1). The
two robot paths are shown in Figure 5.
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Figure 5: The Robot Paths; Case (i), No Collision
Avoidance Routine.

Figure 6 shows the plot of the two robots’ positions (X-
coordinate) versus time allowing for a quick visual collision
identification. On such plots, any location where the line
representing Robot 1’s movement crosses Robot 2’s line
indicates a collision event. There are two collision events in the
example considered. The first occurs when Robot 2 collides
with Robot 1 while trying to place Component 2. The second
collision occurs when Robot 2 tries to place Component 1 and
collides with Robot 1 placing Component 5.
Copyright © 1999 by ASME



0

0.2

0.4

0.6

0.8

1

1.2

-50 0 50 100 150 200 250 300 350
X (mm)

T
im

e 
(s

ec
)

1

5

4

3

2

0

Figure 6: Robot X-Coordinate vs. Time; No Collision-
Avoidance Routine.

For Case (ii), where collision-avoidance is considered, the
simulation yielded a longer minimum total time of 1.151 s with
a different placement sequence of (5, 1, 3, 2, 4, 0). Figure 7
shows the robot paths for Case (ii). Figure 8 shows the robots’
positions versus time. In this case, as expected, the robot time
lines do not cross. Namely, no collisions occur.
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Figure 7: The Robot Paths; Case (ii), With Collision
Avoidance Routine.
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Figure 8: Robot X-Coordinate vs. Time; With Collision-
Avoidance Routine.

4. CONCLUSIONS
This paper presented a generalized point-to-point (PTP)

motion-planning technique for multiple coordinated assembly
robots.  The proposed approach minimizes assembly times
using Genetic Algorithms (GAs). Specifically, as an example
industrial application, the optimization of the electronic
component placement process was addressed.

The collision avoidance strategy proposed is a rule-based
approach and is directly incorporated into the objective function
of the GA.  Since the parameters of sequencing and device
positions during pick-and-place operations affect both the
collision avoidance problem and the performance of a given
placement strategy, both are simultaneously optimized.
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