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B. Benhabhib Remanufacture offers significant economic and ecological advantages over other end-of-
Professor life options for appropriate products. The goal of this research is to estimate replacement
requirements of parts in systems that are remanufactured. In our previous work, a novel
Department of Mechanical and repairable-system reliability model that allows system modifications was developed to
Industrial Engineering, describe a population of systems that are remanufactured. In this paper, the reliability
University of Toronto, model is modified to accommodate changes to the population size, while the population is
5King’s College Road, in service, to better describe actual processes. The effects of two types of disturbances to
Toronto, Ontario, Canada M5S 3G8 population size, pulse and continuous, on the replacement rate behavior are studied.

Analysis of actual industrial data is presented as an example of population replacement
under continuous disturbance. This example confirms that a simulation using the reliabil-
ity model described in this paper yields an estimate for replacement rate with acceptable
error bound.[S1050-04720)00302-G

Introduction into service, causing an increase in population size. Such system
. . . . opulations are referred to herein as non-constant-size system
This research is in the area of environmentally conscious pr?épulations
uct design_and manufacturfe. A_n overall approach to envir_onm N"A system is comprised of parts. Thus, a population of systems
tal evaluation of products is Life-Cycle AnalysisCA), which js modeled as a collection of populations of parts. In this paper,
tracks resource inputs and outputs required for a product fraffe replacement rate behavior of a non-constant-size part popula-
material extraction to end-of-life dispositidd]. Options to dis- tion is studied.
posal at product end-of-life include scrap-material recycling, re-
manufacture and repair/reuse. Reliability Model for Systems Undergoing
Remanufacture offers significant economic and ecological afemanufacture
vantages over other end-of-life options for appropriate products.

Remanufacture consists of the production-batch disassembl This section summarizes the reliability model that was devel-
oped in previous work7,8].

qleamng, replacement and refurbishment of worn parts in defe “This reliability model for systems undergoing remanufacture
tive or obsoletg products. It_r_estores worn and discarded duram?scribes a population of-socket series systems. The population
products to a like-new conditiof2]. Remanufacture can be con-gjze s constant. The population bf systems is represented as a
sidered as recycling at the component level instead of the mategg|lection of m populations of constituent parts, and parts are
level. Therefore, it avoids the possibly unnecessary resource ce@igated as members of their respective populations.

sumption of scrap-material recycling while preserving the value In remanufacture, part failure results in replacement of the part
added to a component during manufact{8¢ The production- with a component of the same or different type. The remaining
batch and off-site nature of remanufacture results in a labor cegtstem either remains unchanged or is reconfigured to accommo-
significantly lower than that required for individual repair. Redate the replacement part. The failure density function of the
manufacture is estimated to save between 40 and 60 percent of@Hginal parts in the population is denotédx). The failure den-

cost of manufacturing a completely new product, while requiringy function of the replacement parts is denofg(k). Thus, the
only 20 percent of the enerdy]. eplacement process of a constant-size part population is denoted

Research that addresses design-for-reuse includes work on {Jr’fgx)‘_b(x)}'

. - : o f f1(x) andf,(x) are the same, i.ef,(x)=f,(x)=1f(x), then
hancing rel!ablllty through desigfb]. Specifically relateq to re- system modification does not occur through the replacement pro-
manufacturing, Hammond and Brd$] generated design-for-

o ) cess. However, if,(x) andf(x) differ, then system modification
remanufacture guidelines and metrics. _ does occur during the replacement process.

Since the primary goal in remanufacture is the reuse of parts,The age distributions of each of the part populations are tracked
and reliability is critical to determining reusability of parts, a reto determine the reliability of the composite system population.
liability model that more accurately describes remanufacture waite fractions of parts in the population, whose ages eghg|
developed in previous work,8]. This reliability model assumed wherei=0,1, .. .n, at timet,=nAt, are:

a constant population size. In practice, however, population sizes At

may vary as a function of time. Some systems may not be re- Qn(tn)ZQO(tO)[l_f f1(x)dx
placed after failure, causing a decrease in population size, while 0

other systems may be added after the initial population was put

(n—1)At

qnl(tn):qo(tl){l_f fo(x)dx

0

Contributed by the Mechanisms Committee for publication in theRNAL OF
MECHANICAL DESIGN. Manuscript received Mar. 1999; revised Mar. 2000. Associ-
ate Technical Editor: L.-W. Tsai.

172 / Vol. 122, JUNE 2000 Copyright © 2000 by ASME Transactions of the ASME



Population-size Increases. For a replacement process where
the population size increases, the total populatiae,, the part
population after the size increasean be viewed as a combina-
tion of two separate populations. The first is the original part
population, installed at timg,, whose fraction in the total popu-
lation after the size increaselis. The second population, added
at timet,,, has fraction in the total populatiary, wherer,+r,

24t
Qx(tn) = %(tn—z)[ 1- fo fo(x)dx

At
qu(tn) = qO(tnl)[ 1- fo fo(x)dx

nAt
=1
Go(tn) =do(to) f(n_l)mfl(x)dx The replacement process for the original part population starts
at timety, while the replacement process for the newly added part
(n—1)At population starts at timg,, . After new parts have been added, the
+QO(11)[ J(n - fo(x)dx|+ ... replacement rate behavior for the total population is a combina-

tion of the two replacement processes.

Let us suppose that a time period At has passed after the
new parts have been added. The replacement rate atttime
=(m+n)At is to be calculated. In the total population, the frac-
tion of parts which failed during timet,,.,=(m+n)At to

(1) tment1=(M+n+1)At can be expressed as:

24t
+q0(tn2)[ J'At fo(x)dx

At
+C1o(tn—1)[ fo fo(x)dx

t =r,03(t +1,03(t 5
After obtaining the value ofjo(t,), the fraction of parts failed ot n) =F10o(tms n) + F205(tn) ®)

and replaced at timg, , the replacement rate at tinhg=nAt, i.e.,

v(nAt), is calculated as: Whereq(l,(tmm) is the fraction of parts that failed of the original

part population anqé(tn) is the fraction of parts that failed of the
do(tn) @ newly added part populatiomg(ty,. ) andqg(t,) are calculated
At using Eq.(1). According to Eq(2), at timet,,. ,, the replacement

) . ) . ) rate for the entire population is
Jiang et al.[8] investigated the stochastic behavior of the

reliability model, and theoretically proved that the replacement Qoltmsn) T At ) + 202 (L)

process with system modifications under a perfectly maintained — ,((m+n)At)= ot _ L0 min 270 0 (6)

repair policy reaches steady state, and is a Superimposed Renewal At At

Process(SRP. At the limit, ast—o, a SRP behaves like a

'rl?énov\?égﬁocfn Eglfsgpeszngﬁivag;go?\e%?iglsﬁr;rigzléﬁgd placement process, the populatlon size may also decrease due
! to the removal of a fraction of parts for various reasons. For

In a perfectly maintained process with system modlflcatlon%(amplel some systems may be discontinued and removed. If

v(ty)=

Population-size Decreases.During the part population re-

th.e steady-gtate vallue for replacement rate depends O.nly on greplacement rate for above case is considered, the age groups
failure density function of the replacement parts. Specifically, {f, | hich the removed parts belong must be specified. Otherwise
converges to the reciprocal of the mean life of the replaceme[ﬂte information for the part population age distribution cannot be

, 0sxsow

parts. determined.
Representation of Failure Density Function. In the reliabil- Herein, only one condition for size decrease is considered, i.e.,
ity model represented in Eql), there exists no restriction on thesome of the parts that failed are not replaced. Those unreplaced
failure density functionf(x). In this paper, the two-parameterfailed parts are removed from the original population. Thus, the
Weibull distribution is used to represent the failure density fungopulation size is decreased by a fraction that cannot be greater
tion f(x) for simulation purposes. Extension to other distributionthan the fraction of parts which failed at that time.
is fairly straightforward. For a part population whose size decreases, the original part
The two-parameter Weibull distribution is: population can be viewed as a combination of two separate part
o populations. The first one is the population of parts remaining in
ax® X\ the process after the size decrease, whose fraction in the original
f(x)= B exp{ N (E) 3) part population iss;. The second one is the part population that
failed at timet,,,, and is not replaced, whose fraction in the origi-
0, elsewhere, nal population iss,, wheres,;+s,=1. Note that,s, cannot be
wherea>0, 8>0, andx is the age of the part. greater than the fraction of parts failedta.
The Weibull failure probability function is: For the sake of discussion, let us suppose thr_;lt the removed
parts were actually replaced, namely, added back into the process
x x|\ [X X\ as a new population. Then, they would be experiencing a replace-
i(X)=f f(x)dx=—ex;{—(ﬁ) ) =1—ex;{—( ) ) ment process that starts at timg, whereas the replacement
0 0 process for the original part population had started at tige
(4)  Similar to the replacement process when the population size in-
N . . creases, the remaining part population and the remdbedin-
Reliability Model for Non-Constant-Size Populations stantly re-addedpart population will experience different replace-
In this section, the reliability model is modified to accommoment processes.
date population-size changes during the replacement process. Th8uppose a period afiAt has passed after the new parts are
variation of a population’s size can be treated as a random distiipseudo-added,” and the replacement rate at titgg ,=(m
bance. Two types of disturbances are considered: +n)At is to be calculated. For the remaining population, the frac-
) e tion of parts that failed during time,, ,=(m+n)At to t;,, 1
1 _Pulse dl_sturbance, Wher_e the_varlatlon occurs only once du,r(ernJrl)At can be expressed as
ing the time under consideration, and
2 Continuous disturbance, where population-size variations oc- (G (tms ) — S02(t1))
cur at random time intervals and at random amplitu@eg., _ {G0ltm+n) 7 S290(tn
Fig. 7 Ao(tm+n) ™ , )
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whereqg(tm:n) is the fraction of parts that failed in the original When the replacement policy changes after the new parts are
part population and(t,) is the fraction of parts that failed in the @dded, as in Case 2, the reliability model must be modified as
pseudo-added part population. Then, at titae ,, the replace- follows:

ment rate of the remaining population is r iAt
g Jolmen) _ (@m0 Gt i) =ltn 0|1 | 000
ol At s;At ' S
i=n+1,...n+m
Whereqé(tmm), q(z)(tn) are calculated using Eq1).
The use of the pseudo-added failure group simplifies the calcu- [ iat
lation of the fraction of the population that fails at a given time, Ai(tm+n) =do(tnem-i)| 1— fa(x)dx|,
which is used to determine the failure rate. To calculate the nu- - 0

merator terms of Eq(7), the last term of Eq(1) is used to com-

puteqo(t;). Equation(1) shows that the calculation of eagh(t;) 1=1...n

is computationally expensive and requires values dg(t) to n+m At

go(ti_1), previously determined. By using the pseudo-added con- Ao(tmen) = E CIo(tn+m—j)f f1(x)dx
cept, we can reuse the values for egglt;) calculated before the j=n+1 (j—1)At

population-size decrease, even after a part of the population has n )
been removed. D Jat f0d 9
Alternatively, without the use of the pseudo-added concept, the +].:1 o(tn+m-j) (i- DAt 2(x)dx ©)
removal of the failure group could be modeled directly. After each !
population-size decrease, to calculate the fraction of the popula-As stated in[8], for a perfectly maintained process with
tion that fails at each time step, the fractions of the age grouff, (x)«f,(x)}, the replacement rate will reach a constant value
remaining in service must be adjusted. For continuous distithat equals the reciprocal of the mean life of the replacement
bance, these adjustments must be made after each populationséar¢s. Thus, it can be conjectured that the replacement rate of a
change. process subject to pulse disturbance will also reach a steady-state
The concept of the pseudo-added population also allows thalue that depends only on the replacement parts.
direct use of the constant-size model for a population with size The age distribution of a part population at steady state can be
decreases, consistent with the treatment of a population with szaculated using expressions developefBilh When new parts are
increases. added into this original part population via a pulse disturbance,
the age distribution of the population is subjected to a transient
period until the new part population reaches steady state.

Reliability Analysis for Pulse Disturbance Examples. Simulations were run to track the replacement rate
In this section, only a replacement process under pulse dist@ehavior for a non-constant-size part population with a pulse size
bance causing size increase will be discussed. The analogy iftgrease. To show the effect of a size change more clearly tfjme
pulse disturbance causing size decrease is straightforward andw@s chosen as a time instance after the original population has
tailed in[10]. reached steady state.
. Replacement rates for the above three proces$g(x)
Analysis of Replacement Process.When a new sub- . f(x)} f(x),f(x)}, {{f;(x)—F,(x)}+f,(x),f2(x)}, and
population of systems is added to a populatlo_n, the Conf'gurat'?{\‘l(x)Hfz(x)},+fz(x),fz(x)} are shown in Figs. 1, 2 and 3,
of the new systems may be the same as, or different from, that,@bpectively, for three different replacement ratios, As previ-
the original population. Thus, for a part population under consigysly statedr is the fraction of original population with respect
eration, the failure density function of those newly added par{§ the overall population size after the addition of new parts. In
may be the same as that of the initial part population, or dlfferer'iig_ 1, the failure density functiorf(x) is (3,4, i.e., a=3,
Assuming that when a different type of parts repla(_:es failed par;§=4_ In Fig. 2,f,(x) is (3,4) andf,(x) is (3,10. In Fig. 3,f,(x)
the original type of parts will not be reintroduced into the popuy (10,10 and f,(x) is (3,10. Timet,, is set to 40, 60 and 60 in
lation, three situations may exist: Figs. 1, 2, and 3, respectively.

1 The process begins witff(x)«—f(x)}. At time t,,, m>0, As_expected, _in Figs. 1 through 3, the replacemgant rate exhil_)its
new parts with a failure density functiof(x) are added into transient behavior when new parts are added. Since the original
the original part population. After timg,,, failed parts continue
to be replaced with new parts with the same failure density func-
tion, f(x). This process, denotef{f(x)—f(x)},+f(x), f(x)},
consists of three components, the original replacement pro-

cess {f(x)«f(x)}, the addition of new parts+ f(x), and the 085 — T — = ]
failure density function of the replacement parts after size in- 03k S o 3
creasef(x). g 3 1=0.2j ;

2 The process begins withf;(x)—f(x)}. At time t,, m £ 0.25 F A 4
>0, new parts with a failure density functidn(x) are added into 5 o2f 3
the original part population. After timg,,, failed parts are re- § T ]
placed with new parts with a different density functidp(x). g 0.15 F 7
This process is denotef{ f,(x)«f,(x)},+f1(x),fo(x)}. Note £ b ]
that in this process, the replacement policy changes from 2 %'f] ]
replacement-with-same to replacement-with-different type of & s 3
parts, after the new sub-population of parts is added. - . l . ]

3 The process begins withf,(x)—f,(x)}. At time t;,, m 0
>0, new parts with a failure density functida(x) are added into
the original part population. After timé,,, failed parts are re-
placed with new parts with a failure density functibs(x). This Fig. 1 Replacement rates for  {{f(x)—Ff(x)},+f(x),f(x)},
process is denotefd f1(X)« f(X)},+ fo(x),f2(x)}. f(x)=(3,4)

0 20 40 60 80
time
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Fig. 3 Replacement rates for {{f (x)—f,(x)},+1,(x),f>(x)},
£,(x)=(10,10), f,(x)=(3,10)

part population has already reached steady state, it can be con-
cluded that the transient behavior is caused solely by the addition

of the parts.
The initial high oscillations in replacement rate, before the ne

population is added, have long been known to be due to a small
standard deviation in the failure density function. For the Weibull
distribution, the standard deviation in time to failure decreases

with increasing values of. These oscillations are damped ou
over time as the population becomes more age-diversifiéd

Example. Let the original part population size be denoted by
M. Let the deviations from the population sik& be normally
distributed,

n(x; u,o)= i e*(1/2)[<x—m/a]2,
270

—o<IX< 0o, (10)

where u and ¢ are the mean and variance of the distribution,
respectively.

In this paper, it is assumed that the duration time between any
two size changes, denotdd, is constant, for a part population
under continuous disturbance. Also, since size variations are as-
sumed to only occur at part replacement times, the duration time
is equal to multiples of the replacement interarrival tiche To
facilitate discussionAt is set to 1 in the following simulation.

A random number generator is used to supgly; u,o) distur-
bances to the original population siZé, Denoting the current
population sizeM’, each random deviation represents a value of
100(M’—M)/M at that time, which stays in the range-e8¢ to
30. Thus, when thé+30%)| noise is applied, the size of the non-
constant population ranges froki(1—3¢%) to M(1+30%). For
example, if the random deviation is equal to 2.5, then at that time,
the population size is calculated B§1+2.5/100=1.025M.

In the simulation below,u=0, o=1. The size of the non-
constant population is varied for 1,000 time units, with size
changes every one time unit, i.&,=1, as shown in Fig. 4. The
replacement rates of this population for two different failure den-
sity functions are shown in Figs. 5 and 6. As expected, in both
cases, the replacement rates reach steady state. These values cor-
respond to the steady-state values of the original size populations,
if they had been kept as constant-size populations.

W

t

continuous disturbance to population size

With the added population, the ratio of the original population to 0 200 400 600 800 1000

the total population, after the new parts are added, also affects
degree of the disturbance due to the population-size increase

Fig. 1, all parts have the same failure density function. Therefore,

the time

-1 Fig. 4 Continuous disturbance (T,=1)

a largerr, corresponds to more original parts that have already
reached steady state to absorb the disturbance of the transient state

of the added population. In Fig. 2, the steady-state replacement .08 r——r—— —— ———— T
rate(inversely proportional t@) of the parts used for replacement
after the population-size increase, differs from that of the parts

before the size increase. In Fig. 3, the degree of oscillation in t
transient state, proportional tg of the replacement parts is lower
than for the original parts.

Reliability Analysis for Continuous Disturbance

In this section, the replacement rate behavior of a part popu
tion under continuous disturbance is studied.

. . . . 0.01 '
The previous section showed that when a pulse disturbance is ]

applied to a replacement process, the replacement rate exhibi

transient behavior. It can be conjectured that the replacement

rate under continuous disturbance will also fluctuate since

0.07 F 3
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continuous disturbance can be viewed as a sequence of pHge 5 Replacement rate under continuous disturbance

disturbances.
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continuous disturbance

A different non-constant-size population, whose size changes
every 30 time units, i.eT.= 30, is shown in Fig. 7. The replace-
ment rate for this population is examined for the same two failure
density functions considered in Figs. 5 and 6. The corresponding
results are shown in Figs. 8 and 9.

When comparing Fig. 5 with Fig. 8 and Fig. 6 with Fig. 9, itis
observed that the time duration between size variation has no
effect on the steady-state value of the replacement rate. Since
duration between size variation is harder to predict in practice
than variation range, this conclusion is important for estimation of
replacement rate for a part population under any type of continu-
ous disturbance.

An Example: Analysis of Industrial Failure Data

In the previous section, it was shown that when a continuous
disturbance is applied to the population size, the “steady-state”
replacement rate fluctuates in a limited range around the steady-
state value of the constant-size population.

To illustrate the implications of the above-mentioned phenom-
enon on practical failure data, some available industrial data were
considered in our work.

Description of Failure Data. Failure data collected from one
type of commercial systems were available to this research. Each
commercial system is identified by its serial number. In each sys-
tem, there are two parts of the type for which data was collected.
The two parts are at different locations in the system, and the
locations are represented by socket numbers, 0 and 1. The part
population is perfectly maintained. Namely, when a part fails, it is
replaced immediately. The failed parts are remanufactured and
used as replacements. Each part has a unique serial number that
remains unchanged after it is remanufactured.

The commercial system population was tracked for a 24-month
period. As shown in Table 1, when a replacement occurs, the
following information is recorded: the system serial numt&ys
No.), the socket numbefSoc No), the part serial numbeiPart
No.), the date on which the part is installddstall Datg, the data
on which the part has failed and is remov@&Emoval Datg and
the total number of days the part has been in operatizeys
Last.

Replacement Rate Evaluation. The number of failures that
occur during (@] is denotedN(t). Then, {N(t),t=0} is an
integer-valuedccounting processwhich includes both the number

of failures during (@] and the instant$,,T,, ..., at which they
occur[11]. In this paper, the replacement rate is expressed as:
N(t) —N(t— ot)
v(t)= T vIa— (11)

whereM is the part population size at tinteand 6t is the inter-
arrival time between two failures.

Table 1 Practical failure data

Sys Soc Part Install Removal Days
No. No. No. Date Date Last
1 1 116 Day 0 Day 4 4
2 0 112 Day 3 Day 14 11
2 1 105 Day 14 Day 34 20
3 0 119 Day 36 Day 49 13
4 0 121 Day 35 Day 53 18
5 0 104 Day 12 Day 53 41
3 0 118 Day 49 Day 56 7
3 1 105 Day 56 Day 64 8
3 0 111 Day 64 Day 79 15
9 0 111 Day 721 Day 733 12
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The replacement rate was calculated for the available failure
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Fig. 12 Population replacement rate of data
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size variation has no influence on the steady-state value of the
replacement rate. Thus, the population-size approximation by
months should not affect the estimation of the replacement rate.
The actual part population size is plotted in Fig. 11, where the
time unit is in months.

To calculate the replacement rate for each month, first, the
number of the replacements that occurred in that month, denoted
V, is determined. Then, the replacement rate is calculated as
V/(30 M), whereM is the population size in that month. Figure
12 shows the actual replacement rate for each month.

Replacement Process Simulation. To generate a simulated
replacement process that corresponds to the actual process, the
failure density function of the actual parts involved was obtained
by curve fitting. Subsequently, this failure density function was
used to generate the simulated replacement process under continu-
ous disturbance.

Since 80 percent of the replacement parts over the time period
tracked were the same type, a single Weibull failure probability
function, Eq.(4), was used to fit all the failure data. The curve-
fitting result is shown in Fig. 13, where=0.7044 andp
=31.2725 with a Coefficient of Multiple Determination &?
=0.998. For the example presented, there was no clear system
modification process that involved replacement of one type of
parts with a different type of parts. Therefore, the capability of
simulating this behavior was not used to generate the replacement
rate that approximates the actual replacement process. The reli-
ability model for the replacement process without system modifi-
cations, Eq(1), wheref,(x)=f,(x)=f(x), is applicable here.

A simulation of the replacement process, under continuous dis-
turbance, was run to generate the replacement rate for the part
population. Since the failed parts are replaced immediately, the
part population is perfectly maintained. Thus, the scheduled re-
placement interarrivaAt— 0. Herein,At was set to 0.1.

Figure 14, showing the plots of both the simulated and actual

probability of failure

data 1
f(x) = (0.7044, 31.2725) | ]
MU SRS

0 1 1 1] 1
0 50 100 150
time (days)

200 250 300

Fig. 13 Curve fitting of Weibull failure probability function

data as follows. First, the counting procg$§t),t=0} was ob-
tained, as shown in Fig. 10. This was achieved by sorting the data
by Removal Date. The day of the first available data was set to
t=0. The number of failures, i.e., replacements, that occur during
(0,t] is counted and denoted(t). In {N(t),t=0}, both the num-

ber of failures during (@] and the instant3,,T,, ..., at which

they occur are recorded.

When calculating the replacement rate using 84,), knowl-
edge of the population size is required. The data in Table 1 is
therefore resorted according to the system serial number. In our
case, the part population size varies daily under continuous dis-
turbance. However, the changes are minor in magnitude when
considered in time units of months. Thus, the part population size
was counted monthly, or over 30 days.

population replacement rate
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As previously conjectured, the duration between population-
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Fig. 14 Replacement rate: data vs. simulation
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replacement rates, illustrates that the actual replacement rate fluc- f1(x) = failure density function of original parts in

tuates within a range similar to that for the simulation results. population
Thus, it can be concluded that the replacement rate of an industrial fo(x) = failure density function of replacement parts
process can be approximated using the inference models presented a = shape parameter of Weibull distribution

in this paper with a limited set of actual failure data. B = scale parameter of Weibull distribution
Terms defined for part populations

Summary m = number of sockets in a series system

In this paper, the replacement rate behavior of a non-constant- M = number of parts in part population
size population of parts was studied to facilitate estimation of t = time elapsed from when population of parts
life-cycle replacement requirements for a population of systems was first put into service
that are remanufactured. A reliability model developed in previ- At = interarrival time between scheduled replace-
ous work was modified to accommodate population-size changes. ments
Size changes to a population of parts are classified as pulse dis- v(t) = at timet, replacement rate of part population,
turbances or continuous disturbances. For pulse disturbances, it i.e., average fraction of parts in population
was shown that the replacement rate experiences a transient be- being replaced per unit time
havior but eventually reaches steady state. For continuous distur- t, = denotation for time measured in units Af,
bances, it was shown that the steady-state value of replacement wheren is a non-negative integer defined s
rate varies but is centered at the steady-state value for the corre- =t,/At
sponding constant-size population. Furthermore, the time duration gi(t,) = age distributions, i.e., at timt,, fraction of
between size variation has little influence on the centerline of the parts with agéAt, i=0,1,...n
replacement rate. N(t) = number of failures that occur during {0,

Actual failure data, collected from a part population replacgf,(x)«f,(x)} = replacement process of a constant-size part
ment process under continuous disturbance, were analyzed. Using population, where original parts have a failure
a counting process, the replacement rate was calculated. The fail- density functionf,(x) and replacement parts
ure density function for the part population was obtained through have a failure density functiofy(x)

curve fitting. This failure density function was then used to simu-
late the corresponding replacement process to compare to the fgikferences
ure data. This example showed that the reliability model for a pa
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