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Reliability Analysis of
Non-Constant-Size Part
Populations in Design
for Remanufacture
Remanufacture offers significant economic and ecological advantages over other e
life options for appropriate products. The goal of this research is to estimate replace
requirements of parts in systems that are remanufactured. In our previous work, a
repairable-system reliability model that allows system modifications was develop
describe a population of systems that are remanufactured. In this paper, the relia
model is modified to accommodate changes to the population size, while the popula
in service, to better describe actual processes. The effects of two types of disturban
population size, pulse and continuous, on the replacement rate behavior are stu
Analysis of actual industrial data is presented as an example of population replace
under continuous disturbance. This example confirms that a simulation using the rel
ity model described in this paper yields an estimate for replacement rate with accep
error bound.@S1050-0472~00!00302-0#
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Introduction

This research is in the area of environmentally conscious p
uct design and manufacture. An overall approach to environm
tal evaluation of products is Life-Cycle Analysis~LCA!, which
tracks resource inputs and outputs required for a product f
material extraction to end-of-life disposition@1#. Options to dis-
posal at product end-of-life include scrap-material recycling,
manufacture and repair/reuse.

Remanufacture offers significant economic and ecological
vantages over other end-of-life options for appropriate produ
Remanufacture consists of the production-batch disassem
cleaning, replacement and refurbishment of worn parts in de
tive or obsolete products. It restores worn and discarded dur
products to a like-new condition@2#. Remanufacture can be con
sidered as recycling at the component level instead of the mat
level. Therefore, it avoids the possibly unnecessary resource
sumption of scrap-material recycling while preserving the va
added to a component during manufacture@3#. The production-
batch and off-site nature of remanufacture results in a labor
significantly lower than that required for individual repair. R
manufacture is estimated to save between 40 and 60 percent o
cost of manufacturing a completely new product, while requir
only 20 percent of the energy@4#.

Research that addresses design-for-reuse includes work o
hancing reliability through design@5#. Specifically related to re-
manufacturing, Hammond and Bras@6# generated design-for
remanufacture guidelines and metrics.

Since the primary goal in remanufacture is the reuse of pa
and reliability is critical to determining reusability of parts, a r
liability model that more accurately describes remanufacture
developed in previous work@7,8#. This reliability model assumed
a constant population size. In practice, however, population s
may vary as a function of time. Some systems may not be
placed after failure, causing a decrease in population size, w
other systems may be added after the initial population was
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into service, causing an increase in population size. Such sys
populations are referred to herein as non-constant-size sy
populations.

A system is comprised of parts. Thus, a population of syste
is modeled as a collection of populations of parts. In this pap
the replacement rate behavior of a non-constant-size part pop
tion is studied.

Reliability Model for Systems Undergoing
Remanufacture

This section summarizes the reliability model that was dev
oped in previous work@7,8#.

This reliability model for systems undergoing remanufactu
describes a population ofm-socket series systems. The populati
size is constant. The population ofM systems is represented as
collection of m populations of constituent parts, and parts a
treated as members of their respective populations.

In remanufacture, part failure results in replacement of the p
with a component of the same or different type. The remain
system either remains unchanged or is reconfigured to accom
date the replacement part. The failure density function of
original parts in the population is denotedf 1(x). The failure den-
sity function of the replacement parts is denotedf 2(x). Thus, the
replacement process of a constant-size part population is den
$ f 1(x)← f 2(x)%.

If f 1(x) and f 2(x) are the same, i.e.,f 1(x)5 f 2(x)5 f (x), then
system modification does not occur through the replacement
cess. However, iff 2(x) and f 1(x) differ, then system modification
does occur during the replacement process.

The age distributions of each of the part populations are trac
to determine the reliability of the composite system populati
The fractions of parts in the population, whose ages equaliDt,
wherei 50,1, . . .n, at timetn5nDt, are:

qn~ tn!5q0~ t0!F12E
0

nDt

f 1~x!dxG
qn21~ tn!5q0~ t1!F12E

0

~n21!Dt

f 2~x!dxG
]

i-
000 by ASME Transactions of the ASME



h
e
n

n

,

e

n

o
.

d

re

-
art
-
d

arts
art
e

ina-

e

c-

l

due
or

d. If
roups
ise,
be

i.e.,
ced

the
ater

part
part
in
inal
at
i-

ved
cess
ace-
t

in-

-

re

ac-
q2~ tn!5q0~ tn22!F12E
0

2Dt

f 2~x!dxG
q1~ tn!5q0~ tn21!F12E

0

Dt

f 2~x!dxG
q0~ tn!5q0~ t0!F E

~n21!Dt

nDt

f 1~x!dxG
1q0~ t1!F E

~n22!Dt

~n21!Dt

f 2~x!dxG1 . . .

1q0~ tn22!F E
Dt

2Dt

f 2~x!dxG
1q0~ tn21!F E

0

Dt

f 2~x!dxG . (1)

After obtaining the value ofq0(tn), the fraction of parts failed
and replaced at timetn , the replacement rate at timetn5nDt, i.e.,
v(nDt), is calculated as:

v~ tn!5
q0~ tn!

Dt
(2)

Jiang et al. @8# investigated the stochastic behavior of t
reliability model, and theoretically proved that the replacem
process with system modifications under a perfectly maintai
repair policy reaches steady state, and is a Superimposed Ren
Process~SRP!. At the limit, as t→`, a SRP behaves like a
Homogeneous Poisson Process~HPP! with a constant hazard
rate, which can be represented by an exponential distribution@9#.
In a perfectly maintained process with system modificatio
the steady-state value for replacement rate depends only on
failure density function of the replacement parts. Specifically
converges to the reciprocal of the mean life of the replacem
parts.

Representation of Failure Density Function. In the reliabil-
ity model represented in Eq.~1!, there exists no restriction on th
failure density functionf (x). In this paper, the two-paramete
Weibull distribution is used to represent the failure density fu
tion f (x) for simulation purposes. Extension to other distributio
is fairly straightforward.

The two-parameter Weibull distribution is:

f ~x!5H axa21

ba expF2S x

b D aG , 0<x<`

0, elsewhere,

(3)

wherea.0, b.0, andx is the age of the part.
The Weibull failure probability function is:

i ~x!5E
0

x

f ~x!dx52expS 2S x

b D aD U
0

x

512expS 2S x

b D aD .

(4)

Reliability Model for Non-Constant-Size Populations
In this section, the reliability model is modified to accomm

date population-size changes during the replacement process
variation of a population’s size can be treated as a random dis
bance. Two types of disturbances are considered:

1 Pulse disturbance, where the variation occurs only once
ing the time under consideration, and

2 Continuous disturbance, where population-size variations
cur at random time intervals and at random amplitudes~e.g.,
Fig. 7!.
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Population-size Increases. For a replacement process whe
the population size increases, the total population,~i.e., the part
population after the size increase!, can be viewed as a combina
tion of two separate populations. The first is the original p
population, installed at timet0 , whose fraction in the total popu
lation after the size increase isr 1 . The second population, adde
at time tm , has fraction in the total populationr 2 , wherer 11r 2
51.

The replacement process for the original part population st
at timet0 , while the replacement process for the newly added p
population starts at timetm . After new parts have been added, th
replacement rate behavior for the total population is a comb
tion of the two replacement processes.

Let us suppose that a time period ofnDt has passed after th
new parts have been added. The replacement rate at timetm1n
5(m1n)Dt is to be calculated. In the total population, the fra
tion of parts which failed during timetm1n5(m1n)Dt to
tm1n115(m1n11)Dt can be expressed as:

q0~ tm1n!5r 1q0
1~ tm1n!1r 2q0

2~ tn! (5)

whereq0
1(tm1n) is the fraction of parts that failed of the origina

part population andq0
2(tn) is the fraction of parts that failed of the

newly added part population.q0
1(tm1n) andq0

2(tn) are calculated
using Eq.~1!. According to Eq.~2!, at timetm1n , the replacement
rate for the entire population is

v~~m1n!Dt !5
q0~ tm1n!

Dt
5

r 1q0
1~ tm1n!1r 2q0

2~ tn!

Dt
(6)

Population-size Decreases.During the part population re-
placement process, the population size may also decrease
to the removal of a fraction of parts for various reasons. F
example, some systems may be discontinued and remove
the replacement rate for above case is considered, the age g
to which the removed parts belong must be specified. Otherw
the information for the part population age distribution cannot
determined.

Herein, only one condition for size decrease is considered,
some of the parts that failed are not replaced. Those unrepla
failed parts are removed from the original population. Thus,
population size is decreased by a fraction that cannot be gre
than the fraction of parts which failed at that time.

For a part population whose size decreases, the original
population can be viewed as a combination of two separate
populations. The first one is the population of parts remaining
the process after the size decrease, whose fraction in the orig
part population iss1 . The second one is the part population th
failed at timetm , and is not replaced, whose fraction in the orig
nal population iss2 , wheres11s251. Note that,s2 cannot be
greater than the fraction of parts failed attm .

For the sake of discussion, let us suppose that the remo
parts were actually replaced, namely, added back into the pro
as a new population. Then, they would be experiencing a repl
ment process that starts at timetm , whereas the replacemen
process for the original part population had started at timet0 .
Similar to the replacement process when the population size
creases, the remaining part population and the removed~but in-
stantly re-added! part population will experience different replace
ment processes.

Suppose a period ofnDt has passed after the new parts a
‘‘pseudo-added,’’ and the replacement rate at timetm1n5(m
1n)Dt is to be calculated. For the remaining population, the fr
tion of parts that failed during timetm1n5(m1n)Dt to tm1n11
5(m1n11)Dt can be expressed as

q0~ tm1n!5
~q0

1~ tm1n!2s2q0
2~ tn!!

s1
, (7)
JUNE 2000, Vol. 122 Õ 173
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whereq0
1(tm1n) is the fraction of parts that failed in the origina

part population andq0
2(tn) is the fraction of parts that failed in th

pseudo-added part population. Then, at timetm1n , the replace-
ment rate of the remaining population is

v~~m1n!Dt !5
q0~ tm1n!

Dt
5

~q0
1~ tm1n!2s2q0

2~ tn!!

s1Dt
, (8)

whereq0
1(tm1n), q0

2(tn) are calculated using Eq.~1!.
The use of the pseudo-added failure group simplifies the ca

lation of the fraction of the population that fails at a given tim
which is used to determine the failure rate. To calculate the
merator terms of Eq.~7!, the last term of Eq.~1! is used to com-
puteq0(t i). Equation~1! shows that the calculation of eachq0(t i)
is computationally expensive and requires values forq0(t0) to
q0(t i 21), previously determined. By using the pseudo-added c
cept, we can reuse the values for eachq0(t i) calculated before the
population-size decrease, even after a part of the population
been removed.

Alternatively, without the use of the pseudo-added concept,
removal of the failure group could be modeled directly. After ea
population-size decrease, to calculate the fraction of the pop
tion that fails at each time step, the fractions of the age gro
remaining in service must be adjusted. For continuous dis
bance, these adjustments must be made after each populatio
change.

The concept of the pseudo-added population also allows
direct use of the constant-size model for a population with s
decreases, consistent with the treatment of a population with
increases.

Reliability Analysis for Pulse Disturbance
In this section, only a replacement process under pulse dis

bance causing size increase will be discussed. The analogy
pulse disturbance causing size decrease is straightforward an
tailed in @10#.

Analysis of Replacement Process.When a new sub-
population of systems is added to a population, the configura
of the new systems may be the same as, or different from, tha
the original population. Thus, for a part population under cons
eration, the failure density function of those newly added pa
may be the same as that of the initial part population, or differe
Assuming that when a different type of parts replaces failed pa
the original type of parts will not be reintroduced into the pop
lation, three situations may exist:

1 The process begins with$ f (x)← f (x)%. At time tm , m.0,
new parts with a failure density functionf (x) are added into
the original part population. After timetm , failed parts continue
to be replaced with new parts with the same failure density fu
tion, f (x). This process, denoted$$ f (x)← f (x)%,1 f (x), f (x)%,
consists of three components, the original replacement
cess,$ f (x)← f (x)%, the addition of new parts,1 f (x), and the
failure density function of the replacement parts after size
crease,f (x).

2 The process begins with$ f 1(x)← f 1(x)%. At time tm , m
.0, new parts with a failure density functionf 1(x) are added into
the original part population. After timetm , failed parts are re-
placed with new parts with a different density function,f 2(x).
This process is denoted$$ f 1(x)← f 1(x)%,1 f 1(x), f 2(x)%. Note
that in this process, the replacement policy changes fr
replacement-with-same to replacement-with-different type
parts, after the new sub-population of parts is added.

3 The process begins with$ f 1(x)← f 2(x)%. At time tm , m
.0, new parts with a failure density functionf 2(x) are added into
the original part population. After timetm , failed parts are re-
placed with new parts with a failure density functionf 2(x). This
process is denoted$$ f 1(x)← f 2(x)%,1 f 2(x), f 2(x)%.
174 Õ Vol. 122, JUNE 2000
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When the replacement policy changes after the new parts
added, as in Case 2, the reliability model must be modified
follows:

qi~ tm1n!5q0~ tn1m2 i !F12E
0

iDt

f 1~x!dxG ,

i 5n11, . . . ,n1m

qi~ tm1n!5q0~ tn1m2 i !F12E
0

iDt

f 2~x!dxG ,

i 51, . . . ,n

q0~ tm1n!5 (
j 5n11

n1m

q0~ tn1m2 j !E
~ j 21!Dt

j Dt

f 1~x!dx

1(
j 51

n

q0~ tn1m2 j !E
~ j 21!Dt

j Dt

f 2~x!dx (9)

As stated in @8#, for a perfectly maintained process wit
$ f 1(x)← f 2(x)%, the replacement rate will reach a constant va
that equals the reciprocal of the mean life of the replacem
parts. Thus, it can be conjectured that the replacement rate
process subject to pulse disturbance will also reach a steady-
value that depends only on the replacement parts.

The age distribution of a part population at steady state can
calculated using expressions developed in@8#. When new parts are
added into this original part population via a pulse disturban
the age distribution of the population is subjected to a trans
period until the new part population reaches steady state.

Examples. Simulations were run to track the replacement ra
behavior for a non-constant-size part population with a pulse
increase. To show the effect of a size change more clearly, timtm
was chosen as a time instance after the original population
reached steady state.

Replacement rates for the above three processes,$$ f (x)
← f (x)%, f (x), f (x)%, $$ f 1(x)← f 1(x)%,1 f 1(x), f 2(x)%, and
$$ f 1(x)← f 2(x)%,1 f 2(x), f 2(x)% are shown in Figs. 1, 2 and 3
respectively, for three different replacement ratios,r 1 . As previ-
ously stated,r 1 is the fraction of original population with respec
to the overall population size after the addition of new parts.
Fig. 1, the failure density functionf (x) is ~3,4!, i.e., a53,
b54. In Fig. 2, f 1(x) is ~3,4! and f 2(x) is ~3,10!. In Fig. 3, f 1(x)
is ~10,10! and f 2(x) is ~3,10!. Time tm is set to 40, 60 and 60 in
Figs. 1, 2, and 3, respectively.

As expected, in Figs. 1 through 3, the replacement rate exh
transient behavior when new parts are added. Since the orig

Fig. 1 Replacement rates for ˆˆf „x …]f „x …‰,¿f „x …,f „x …‰,
f „x …Ä„3,4…
Transactions of the ASME
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part population has already reached steady state, it can be
cluded that the transient behavior is caused solely by the add
of the parts.

The initial high oscillations in replacement rate, before the n
population is added, have long been known to be due to a s
standard deviation in the failure density function. For the Weib
distribution, the standard deviation in time to failure decrea
with increasing values ofa. These oscillations are damped o
over time as the population becomes more age-diversified@7#.
With the added population, the ratio of the original population
the total population, after the new parts are added, also affect
degree of the disturbance due to the population-size increas
Fig. 1, all parts have the same failure density function. Theref
a largerr 1 corresponds to more original parts that have alrea
reached steady state to absorb the disturbance of the transien
of the added population. In Fig. 2, the steady-state replacem
rate~inversely proportional tob! of the parts used for replaceme
after the population-size increase, differs from that of the pa
before the size increase. In Fig. 3, the degree of oscillation in
transient state, proportional toa, of the replacement parts is lowe
than for the original parts.

Reliability Analysis for Continuous Disturbance
In this section, the replacement rate behavior of a part pop

tion under continuous disturbance is studied.
The previous section showed that when a pulse disturbanc

applied to a replacement process, the replacement rate exhib
transient behavior. It can be conjectured that the replacem
rate under continuous disturbance will also fluctuate sinc
continuous disturbance can be viewed as a sequence of p
disturbances.

Fig. 2 Replacement rates for ˆˆf 1„x …]f 1„x …‰,¿f 1„x …,f 2„x …‰,
f 1„x …Ä„3,4…, f 2„x …Ä„3,10…

Fig. 3 Replacement rates for ˆˆf 1„x …]f 2„x …‰,¿f 2„x …,f 2„x …‰,
f 1„x …Ä„10,10…, f 2„x …Ä„3,10…
Journal of Mechanical Design
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Example. Let the original part population size be denoted
M. Let the deviations from the population sizeM be normally
distributed,

n~x;m,s!5
1

A2ps
e2~1/2!@~x2m!/s#2

,

2`,x,`, (10)

where m and s2 are the mean and variance of the distributio
respectively.

In this paper, it is assumed that the duration time between
two size changes, denotedTc , is constant, for a part populatio
under continuous disturbance. Also, since size variations are
sumed to only occur at part replacement times, the duration t
is equal to multiples of the replacement interarrival timeDt. To
facilitate discussion,Dt is set to 1 in the following simulation.

A random number generator is used to supplyn(x;m,s) distur-
bances to the original population size,M. Denoting the current
population sizeM 8, each random deviation represents a value
100(M 82M )/M at that time, which stays in the range of23s to
3s. Thus, when theu63s%u noise is applied, the size of the non
constant population ranges fromM~123s%! to M~113s%!. For
example, if the random deviation is equal to 2.5, then at that ti
the population size is calculated asM~112.5/100!51.025M.

In the simulation below,m50, s51. The size of the non-
constant population is varied for 1,000 time units, with si
changes every one time unit, i.e.,Tc51, as shown in Fig. 4. The
replacement rates of this population for two different failure de
sity functions are shown in Figs. 5 and 6. As expected, in b
cases, the replacement rates reach steady state. These value
respond to the steady-state values of the original size populati
if they had been kept as constant-size populations.

Fig. 4 Continuous disturbance „TcÄ1…

Fig. 5 Replacement rate under continuous disturbance
„TcÄ1, f „x …Ä„0.7,31……
JUNE 2000, Vol. 122 Õ 175
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Fig. 6 Replacement rate under continuous disturbance
„TcÄ1, f „x …Ä„5,10……

Fig. 7 Continuous disturbance „TcÄ30…

Fig. 8 Replacement rate under continuous disturbance
„TcÄ30, f „x …Ä„0.7,31……

Fig. 9 Replacement rate under continuous disturbance
„TcÄ30, f „x …Ä„5,10……
176 Õ Vol. 122, JUNE 2000
A different non-constant-size population, whose size chan
every 30 time units, i.e.,Tc530, is shown in Fig. 7. The replace
ment rate for this population is examined for the same two fail
density functions considered in Figs. 5 and 6. The correspond
results are shown in Figs. 8 and 9.

When comparing Fig. 5 with Fig. 8 and Fig. 6 with Fig. 9, it
observed that the time duration between size variation has
effect on the steady-state value of the replacement rate. S
duration between size variation is harder to predict in prac
than variation range, this conclusion is important for estimation
replacement rate for a part population under any type of cont
ous disturbance.

An Example: Analysis of Industrial Failure Data
In the previous section, it was shown that when a continu

disturbance is applied to the population size, the ‘‘steady-sta
replacement rate fluctuates in a limited range around the ste
state value of the constant-size population.

To illustrate the implications of the above-mentioned pheno
enon on practical failure data, some available industrial data w
considered in our work.

Description of Failure Data. Failure data collected from one
type of commercial systems were available to this research. E
commercial system is identified by its serial number. In each s
tem, there are two parts of the type for which data was collec
The two parts are at different locations in the system, and
locations are represented by socket numbers, 0 and 1. The
population is perfectly maintained. Namely, when a part fails, i
replaced immediately. The failed parts are remanufactured
used as replacements. Each part has a unique serial numbe
remains unchanged after it is remanufactured.

The commercial system population was tracked for a 24-mo
period. As shown in Table 1, when a replacement occurs,
following information is recorded: the system serial number~Sys
No.!, the socket number~Soc No.!, the part serial number~Part
No.!, the date on which the part is installed~Install Date!, the data
on which the part has failed and is removed~Removal Date!, and
the total number of days the part has been in operation~Days
Last!.

Replacement Rate Evaluation. The number of failures tha
occur during (0,t# is denotedN(t). Then, $N(t),t>0% is an
integer-valuedcounting process, which includes both the numbe
of failures during (0,t# and the instantsT1 ,T2 , . . . , at which they
occur @11#. In this paper, the replacement rate is expressed as

v~ t !5
N~ t !2N~ t2dt !

Mdt
, (11)

whereM is the part population size at timet anddt is the inter-
arrival time between two failures.

Table 1 Practical failure data

Sys
No.

Soc
No.

Part
No.

Install
Date

Removal
Date

Days
Last

1 1 116 Day 0 Day 4 4
2 0 112 Day 3 Day 14 11
2 1 105 Day 14 Day 34 20
3 0 119 Day 36 Day 49 13
4 0 121 Day 35 Day 53 18
5 0 104 Day 12 Day 53 41
3 0 118 Day 49 Day 56 7
3 1 105 Day 56 Day 64 8
3 0 111 Day 64 Day 79 15
] ] ] ] ] ]

9 0 111 Day 721 Day 733 12
Transactions of the ASME
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The replacement rate was calculated for the available fai
data as follows. First, the counting process$N(t),t>0% was ob-
tained, as shown in Fig. 10. This was achieved by sorting the
by Removal Date. The day of the first available data was se
t50. The number of failures, i.e., replacements, that occur du
(0,t# is counted and denotedN(t). In $N(t),t>0%, both the num-
ber of failures during (0,t# and the instantsT1 ,T2 , . . . , at which
they occur are recorded.

When calculating the replacement rate using Eq.~11!, knowl-
edge of the population size is required. The data in Table
therefore resorted according to the system serial number. In
case, the part population size varies daily under continuous
turbance. However, the changes are minor in magnitude w
considered in time units of months. Thus, the part population
was counted monthly, or over 30 days.

As previously conjectured, the duration between populati

Fig. 10 Counting process ˆN„t …,tÐ0‰

Fig. 11 Population size of data

Fig. 12 Population replacement rate of data
Journal of Mechanical Design
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size variation has no influence on the steady-state value of
replacement rate. Thus, the population-size approximation
months should not affect the estimation of the replacement r
The actual part population size is plotted in Fig. 11, where
time unit is in months.

To calculate the replacement rate for each month, first,
number of the replacements that occurred in that month, den
V, is determined. Then, the replacement rate is calculated
V/(30 M ), whereM is the population size in that month. Figur
12 shows the actual replacement rate for each month.

Replacement Process Simulation. To generate a simulated
replacement process that corresponds to the actual process
failure density function of the actual parts involved was obtain
by curve fitting. Subsequently, this failure density function w
used to generate the simulated replacement process under co
ous disturbance.

Since 80 percent of the replacement parts over the time pe
tracked were the same type, a single Weibull failure probabi
function, Eq.~4!, was used to fit all the failure data. The curv
fitting result is shown in Fig. 13, wherea50.7044 andb
531.2725 with a Coefficient of Multiple Determination ofR2

50.998. For the example presented, there was no clear sy
modification process that involved replacement of one type
parts with a different type of parts. Therefore, the capability
simulating this behavior was not used to generate the replacem
rate that approximates the actual replacement process. The
ability model for the replacement process without system mod
cations, Eq.~1!, where f 1(x)5 f 2(x)5 f (x), is applicable here.

A simulation of the replacement process, under continuous
turbance, was run to generate the replacement rate for the
population. Since the failed parts are replaced immediately,
part population is perfectly maintained. Thus, the scheduled
placement interarrivalDt→0. Herein,Dt was set to 0.1.

Figure 14, showing the plots of both the simulated and act

Fig. 13 Curve fitting of Weibull failure probability function

Fig. 14 Replacement rate: data vs. simulation
JUNE 2000, Vol. 122 Õ 177



l

e

g

s
m
o

c

a

r

art
re
s

f
vel-

ns
-

ork

cts
E
sium,

,’’
,

u-

sis
ch.

d.

u-
er-
replacement rates, illustrates that the actual replacement rate
tuates within a range similar to that for the simulation resu
Thus, it can be concluded that the replacement rate of an indus
process can be approximated using the inference models pres
in this paper with a limited set of actual failure data.

Summary
In this paper, the replacement rate behavior of a non-const

size population of parts was studied to facilitate estimation
life-cycle replacement requirements for a population of syste
that are remanufactured. A reliability model developed in pre
ous work was modified to accommodate population-size chan
Size changes to a population of parts are classified as pulse
turbances or continuous disturbances. For pulse disturbance
was shown that the replacement rate experiences a transien
havior but eventually reaches steady state. For continuous di
bances, it was shown that the steady-state value of replace
rate varies but is centered at the steady-state value for the c
sponding constant-size population. Furthermore, the time dura
between size variation has little influence on the centerline of
replacement rate.

Actual failure data, collected from a part population repla
ment process under continuous disturbance, were analyzed. U
a counting process, the replacement rate was calculated. The
ure density function for the part population was obtained throu
curve fitting. This failure density function was then used to sim
late the corresponding replacement process to compare to the
ure data. This example showed that the reliability model for a p
population replacement process under continuous disturb
could be used to approximate an actual replacement process
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Nomenclature
The terms used in the reliability modeling and statistical ana

sis of repairable systems are:
Terms defined for parts

x 5 age of part, measured in time, a real variable
f„x… 5 failure density function of parts

E
0

`

f~x!dx51

i„x… 5 failure probability function of parts

i~x!5E
0

x

f~x!dx
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f1„x… 5 failure density function of original parts in
population

f2„x… 5 failure density function of replacement parts
a 5 shape parameter of Weibull distribution
b 5 scale parameter of Weibull distribution

Terms defined for part populations

m 5 number of sockets in a series system
M 5 number of parts in part population

t 5 time elapsed from when population of parts
was first put into service

Dt 5 interarrival time between scheduled replace-
ments

v„t… 5 at time t, replacement rate of part population,
i.e., average fraction of parts in population
being replaced per unit time

tn 5 denotation for time measured in units ofDt,
wheren is a non-negative integer defined asn
5tn /Dt

qi„tn… 5 age distributions, i.e., at timetn , fraction of
parts with ageiDt, i 50,1, . . .n

N„t… 5 number of failures that occur during (0,t#
ˆf1„x…]f2„x…‰ 5 replacement process of a constant-size p

population, where original parts have a failu
density function f 1(x) and replacement part
have a failure density functionf 2(x)
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